a(CHEBI:"calcium(2+)", loc(GO:intracellular)) regulates bp(GO:"signal release")
It was then recognized that Ca2+ flux directly through nAChR channels or indirectly via voltage-gated Ca2+ channels is relevant for nicotinic modulation of transmitter release, synaptic plasticity, as well as neuronal viability, differentiation, and migration.
BEL Commons is developed and maintained in an academic capacity by Charles Tapley Hoyt and Daniel Domingo-Fernández at the Fraunhofer SCAI Department of Bioinformatics with support from the IMI project, AETIONOMY. It is built on top of PyBEL, an open source project. Please feel free to contact us here to give us feedback or report any issues. Also, see our Publishing Notes and Data Protection information.
If you find BEL Commons useful in your work, please consider citing: Hoyt, C. T., Domingo-Fernández, D., & Hofmann-Apitius, M. (2018). BEL Commons: an environment for exploration and analysis of networks encoded in Biological Expression Language. Database, 2018(3), 1–11.