a(CHEBI:paclitaxel) decreases p(RGD:Mapt, pmod(Ph, Ser, 262))
When overexpressed in rat hippocampal primary neurons, 14-3-3z causes an increase in Ser(262) phosphorylation, a decrease in the amount of microtubule-bound tau, a reduction in the amount of polymerized microtubules, as well as microtubule instability. Downregulation of synaptophysin in 14-3-3z overexpressing neurons was mitigated by inhibiting the proteosome, indicating that 14-3-3z promotes proteosomal degradation of synaptophysin. When 14-3-3z overexpressing neurons were treated with the microtubule stabilizing drug taxol, tau Ser(262) phosphorylation decreased and synaptophysin level was restored.
BEL Commons is developed and maintained in an academic capacity by Charles Tapley Hoyt and Daniel Domingo-Fernández at the Fraunhofer SCAI Department of Bioinformatics with support from the IMI project, AETIONOMY. It is built on top of PyBEL, an open source project. Please feel free to contact us here to give us feedback or report any issues. Also, see our Publishing Notes and Data Protection information.
If you find BEL Commons useful in your work, please consider citing: Hoyt, C. T., Domingo-Fernández, D., & Hofmann-Apitius, M. (2018). BEL Commons: an environment for exploration and analysis of networks encoded in Biological Expression Language. Database, 2018(3), 1–11.