a(CHEBI:heme)
to p(HGNC:FTH1)
In agreement with the electrical cell–substrate impedance sensing data described above, the proteome changes triggered by 10 μM heme were indicative of an adaptive response with prominent induction of HMOX1 and ferritin light (FTL) and heavy (FTH1) chains (Figure 5d,left panel).
a(CHEBI:heme) increases p(HGNC:FTH1)
eefc778b40
Cells deficient on FtH are more susceptible to oxidative damage, while increased amounts of FtH protects cells from death induced by challenges such as Fe, tumor necrosis factor (TNF), heme, heme plus TNF, or oxidized low-density lipoprotein (LDL; Juckett et al., 1995; Pham et al., 2004; Gozzelino et al., 2012).
p(HGNC:FTH1) decreases a(CHEBI:heme)
ef0a92d969
BEL Commons is developed and maintained in an academic capacity by Charles Tapley Hoyt and Daniel Domingo-Fernández at the Fraunhofer SCAI Department of Bioinformatics with support from the IMI project, AETIONOMY. It is built on top of PyBEL, an open source project. Please feel free to contact us here to give us feedback or report any issues. Also, see our Publishing Notes and Data Protection information.
If you find BEL Commons useful in your work, please consider citing: Hoyt, C. T., Domingo-Fernández, D., & Hofmann-Apitius, M. (2018). BEL Commons: an environment for exploration and analysis of networks encoded in Biological Expression Language. Database, 2018(3), 1–11.