a(GO:"neurofibrillary tangle") increases act(p(MGI:Stat1))
Consistent with NFTs from human AD, mouse NFTs also caused significant activation scores for IFNG, TNF, IL-1B, as well as enrichment in other senescence associated JAK, STAT, CDKN2A and BCL2 predicted upstream regulators (Figure 1c) indicating translational relevance for using tauNFT mice to explore our hypothesis
BEL Commons is developed and maintained in an academic capacity by Charles Tapley Hoyt and Daniel Domingo-Fernández at the Fraunhofer SCAI Department of Bioinformatics with support from the IMI project, AETIONOMY. It is built on top of PyBEL, an open source project. Please feel free to contact us here to give us feedback or report any issues. Also, see our Publishing Notes and Data Protection information.
If you find BEL Commons useful in your work, please consider citing: Hoyt, C. T., Domingo-Fernández, D., & Hofmann-Apitius, M. (2018). BEL Commons: an environment for exploration and analysis of networks encoded in Biological Expression Language. Database, 2018(3), 1–11.