Lewy Bodies
The neurotransmitter dopamine (DA) has been shown to promote the formation of stable, SDS-resistant α -syn oligomers both in vitro and in neurons30–32 by different mechanisms, including the formation of stable α -syn-DA-quinone adducts, methionine oxidation, or non-covalent interactions33. PubMed:27075649
DA-mediated α -syn oligomers constitute a range of SDS-resistant species with apparent molecular weights ranging from over 2200 to 200 kDa as determined by SEC (Fig. 4a). PubMed:27075649
GA-cross-linked α -syn oligomers are also a heterogeneous set of SDS-resistant oligomeric species (Fig. 4b). PubMed:27075649
Parkinson’s disease (PD), Multiple System Atrophy (MSA) and Dementia with Lewy Bodies (DLB) are devastating synucleinopathies. The deposition of filamentous insoluble protein inclusions termed Lewy bodies and Lewy neurites whose main constituent is aggregated α -synuclein (α -syn) characterizes synucleinopathies. PubMed:27075649
Parkinson’s disease (PD), Multiple System Atrophy (MSA) and Dementia with Lewy Bodies (DLB) are devastating synucleinopathies. The deposition of filamentous insoluble protein inclusions termed Lewy bodies and Lewy neurites whose main constituent is aggregated α -synuclein (α -syn) characterizes synucleinopathies. PubMed:27075649
BEL Commons is developed and maintained in an academic capacity by Charles Tapley Hoyt and Daniel Domingo-Fernández at the Fraunhofer SCAI Department of Bioinformatics with support from the IMI project, AETIONOMY. It is built on top of PyBEL, an open source project. Please feel free to contact us here to give us feedback or report any issues. Also, see our Publishing Notes and Data Protection information.
If you find BEL Commons useful in your work, please consider citing: Hoyt, C. T., Domingo-Fernández, D., & Hofmann-Apitius, M. (2018). BEL Commons: an environment for exploration and analysis of networks encoded in Biological Expression Language. Database, 2018(3), 1–11.