Name
Colorectal Neoplasms
Namespace Keyword
MeSHDisease
Namespace
MeSH
Namespace Version
20170511
Namespace URL
https://arty.scai.fraunhofer.de/artifactory/bel/annotation/mesh-diseases/mesh-diseases-20170511.belanno

Sample Annotated Edges 5

a(PUBCHEM:135316034) decreases p(HGNC:UNG) View Subject | View Object

In colon carcinoma, IPA analysis revealed 28 genes associated with the disease that were also modulated by Protandim treatment. Of these, the first 25 listed (89%) were regulated by Protandim in the opposing direction to that taken by the colon carcinoma disease process. PubMed:22020111

a(PUBCHEM:135316034) decreases p(HGNC:EFCAB11) View Subject | View Object

In colon carcinoma, IPA analysis revealed 28 genes associated with the disease that were also modulated by Protandim treatment. Of these, the first 25 listed (89%) were regulated by Protandim in the opposing direction to that taken by the colon carcinoma disease process. PubMed:22020111

a(PUBCHEM:135316034) decreases p(HGNC:ANTXR1) View Subject | View Object

In colon carcinoma, IPA analysis revealed 28 genes associated with the disease that were also modulated by Protandim treatment. Of these, the first 25 listed (89%) were regulated by Protandim in the opposing direction to that taken by the colon carcinoma disease process. PubMed:22020111

a(PUBCHEM:135316034) increases p(HGNC:ABCD3) View Subject | View Object

In colon carcinoma, IPA analysis revealed 28 genes associated with the disease that were also modulated by Protandim treatment. Of these, the first 25 listed (89%) were regulated by Protandim in the opposing direction to that taken by the colon carcinoma disease process. PubMed:22020111

a(PUBCHEM:135316034) increases p(HGNC:MICB) View Subject | View Object

In colon carcinoma, IPA analysis revealed 28 genes associated with the disease that were also modulated by Protandim treatment. Of these, the first 25 listed (89%) were regulated by Protandim in the opposing direction to that taken by the colon carcinoma disease process. PubMed:22020111

About

BEL Commons is developed and maintained in an academic capacity by Charles Tapley Hoyt and Daniel Domingo-Fernández at the Fraunhofer SCAI Department of Bioinformatics with support from the IMI project, AETIONOMY. It is built on top of PyBEL, an open source project. Please feel free to contact us here to give us feedback or report any issues. Also, see our Publishing Notes and Data Protection information.

If you find BEL Commons useful in your work, please consider citing: Hoyt, C. T., Domingo-Fernández, D., & Hofmann-Apitius, M. (2018). BEL Commons: an environment for exploration and analysis of networks encoded in Biological Expression Language. Database, 2018(3), 1–11.