a(MESH:Manduca)
One insect has escaped the ill effects of nicotine, Manduca sextans or the tobacco horn worm. While nicotine binds the nAChR to activate and subsequently desensitize it, this insect eats the tobacco plant without ill effects. Manduca exhibits two adaptations to tolerate the effects of nicotine. The first is altered nAChR amino acid sequences that limit the affinity of nicotine for the nAChR (136). The second is the development of the functional equivalent to a blood-brain barrier. PubMed:19126755
One insect has escaped the ill effects of nicotine, Manduca sextans or the tobacco horn worm. While nicotine binds the nAChR to activate and subsequently desensitize it, this insect eats the tobacco plant without ill effects. Manduca exhibits two adaptations to tolerate the effects of nicotine. The first is altered nAChR amino acid sequences that limit the affinity of nicotine for the nAChR (136). The second is the development of the functional equivalent to a blood-brain barrier. PubMed:19126755
One insect has escaped the ill effects of nicotine, Manduca sextans or the tobacco horn worm. While nicotine binds the nAChR to activate and subsequently desensitize it, this insect eats the tobacco plant without ill effects. Manduca exhibits two adaptations to tolerate the effects of nicotine. The first is altered nAChR amino acid sequences that limit the affinity of nicotine for the nAChR (136). The second is the development of the functional equivalent to a blood-brain barrier. PubMed:19126755
BEL Commons is developed and maintained in an academic capacity by Charles Tapley Hoyt and Daniel Domingo-Fernández at the Fraunhofer SCAI Department of Bioinformatics with support from the IMI project, AETIONOMY. It is built on top of PyBEL, an open source project. Please feel free to contact us here to give us feedback or report any issues. Also, see our Publishing Notes and Data Protection information.
If you find BEL Commons useful in your work, please consider citing: Hoyt, C. T., Domingo-Fernández, D., & Hofmann-Apitius, M. (2018). BEL Commons: an environment for exploration and analysis of networks encoded in Biological Expression Language. Database, 2018(3), 1–11.