Equivalencies: 0 | Classes: 0 | Children: 0 | Explore

Entity

Name
Gastrointestinal Tract
Namespace
mesh
Namespace Version
20181007
Namespace URL
https://raw.githubusercontent.com/pharmacome/terminology/8ccfed235e418e4c8aa576f9a5ef0f838e794c7f/external/mesh-names.belns

Appears in Networks 3

Activation of M1 and M4 muscarinic receptors as potential treatments for Alzheimer's disease and schizophrenia. v1.0.0

This file encodes the article Activation of M1 and M4 muscarinic receptors as potential treatments for Alzheimer’s disease and schizophrenia by Choi et al, 2014

M1 muscarinic acetylcholine receptor in Alzheimer’s disease v1.0.0

This file encodes the article M1 muscarinic acetylcholine receptor in Alzheimer’s disease by Jiang et al, 2014

In-Edges 3

a(CHEBI:"EC 3.1.1.7 (acetylcholinesterase) inhibitor") association a(MESH:"Gastrointestinal Tract") View Subject | View Object

Unfortunately, cardiovascular and gastrointestinal side effects are often observed with these treatments, effects thought to be mediated by peripherally located ACh receptors. Despite this, AChEIs remain modestly beneficial for treating AD and other forms of dementia. PubMed:24511233

a(CHEBI:xanomeline) association a(MESH:"Gastrointestinal Tract") View Subject | View Object

In addition, xanomeline produced statistically significant improvements in verbal learning and short-term memory, indicating efficacy in treating cognitive symptoms.40 Unfortunately, gastrointestinal side effects were observed, and dose limitations have removed it from consideration for long-term clinical use. PubMed:24511233

p(HGNCGENEFAMILY:"Cholinergic receptors muscarinic") association a(MESH:"Gastrointestinal Tract") View Subject | View Object

Members of the mAChR family are widely expressed in various regions in the central nervous system (CNS) and in the peripheral system. They play crucial roles in diverse physiological processes such as memory, attention, nociception, motor control, sleep-wake cycles, and cardiovascular, renal, and gastrointestinal functions PubMed:24590577

Out-Edges 6

a(MESH:"Gastrointestinal Tract") association a(CHEBI:"EC 3.1.1.7 (acetylcholinesterase) inhibitor") View Subject | View Object

Unfortunately, cardiovascular and gastrointestinal side effects are often observed with these treatments, effects thought to be mediated by peripherally located ACh receptors. Despite this, AChEIs remain modestly beneficial for treating AD and other forms of dementia. PubMed:24511233

a(MESH:"Gastrointestinal Tract") association a(CHEBI:xanomeline) View Subject | View Object

In addition, xanomeline produced statistically significant improvements in verbal learning and short-term memory, indicating efficacy in treating cognitive symptoms.40 Unfortunately, gastrointestinal side effects were observed, and dose limitations have removed it from consideration for long-term clinical use. PubMed:24511233

a(MESH:"Gastrointestinal Tract") association p(HGNCGENEFAMILY:"Cholinergic receptors muscarinic") View Subject | View Object

Members of the mAChR family are widely expressed in various regions in the central nervous system (CNS) and in the peripheral system. They play crucial roles in diverse physiological processes such as memory, attention, nociception, motor control, sleep-wake cycles, and cardiovascular, renal, and gastrointestinal functions PubMed:24590577

a(MESH:"Gastrointestinal Tract") decreases a(CHEBI:"amyloid-beta") View Subject | View Object

By measuring Aβ levels in superior vena cava and inferior vena cava, it is clear thatAβ levels are getting lower and lower along the direction of the vein blood flow, and the contents of Aβ40 and total Aβ in artery are significantly less than those in vein, suggesting a part of Aβ40 and total Aβ can be cleared by peripheral organs and tissues, such as the liver, kidney, skin, and the gastrointestinal tract, although there is no change in Aβ42 concentrations (Xiang et al. 2015) PubMed:29626319

a(MESH:"Gastrointestinal Tract") decreases a(CHEBI:"amyloid-beta polypeptide 40") View Subject | View Object

By measuring Aβ levels in superior vena cava and inferior vena cava, it is clear thatAβ levels are getting lower and lower along the direction of the vein blood flow, and the contents of Aβ40 and total Aβ in artery are significantly less than those in vein, suggesting a part of Aβ40 and total Aβ can be cleared by peripheral organs and tissues, such as the liver, kidney, skin, and the gastrointestinal tract, although there is no change in Aβ42 concentrations (Xiang et al. 2015) PubMed:29626319

a(MESH:"Gastrointestinal Tract") causesNoChange a(CHEBI:"amyloid-beta polypeptide 42") View Subject | View Object

By measuring Aβ levels in superior vena cava and inferior vena cava, it is clear thatAβ levels are getting lower and lower along the direction of the vein blood flow, and the contents of Aβ40 and total Aβ in artery are significantly less than those in vein, suggesting a part of Aβ40 and total Aβ can be cleared by peripheral organs and tissues, such as the liver, kidney, skin, and the gastrointestinal tract, although there is no change in Aβ42 concentrations (Xiang et al. 2015) PubMed:29626319

About

BEL Commons is developed and maintained in an academic capacity by Charles Tapley Hoyt and Daniel Domingo-Fernández at the Fraunhofer SCAI Department of Bioinformatics with support from the IMI project, AETIONOMY. It is built on top of PyBEL, an open source project. Please feel free to contact us here to give us feedback or report any issues. Also, see our Publishing Notes and Data Protection information.

If you find BEL Commons useful in your work, please consider citing: Hoyt, C. T., Domingo-Fernández, D., & Hofmann-Apitius, M. (2018). BEL Commons: an environment for exploration and analysis of networks encoded in Biological Expression Language. Database, 2018(3), 1–11.