path(MESH:"Niemann-Pick Disease, Type C")
Finally, numerous studies using iPSC models have implicated changes in macroautophagy pathways in Parkinson’s disease [137–144], Gaucher disease [145], Niemann-Pick Type C1 disease [146–148] and diseases affecting motor neurons, including ALS [149,150], spinal and bulbar muscular atrophy (SBMA) [151], Brown- Vialetto disease [152], Charcot-Marie-Tooth 2A [153] and hereditary spastic paraplegia [154] PubMed:29758300
Finally, numerous studies using iPSC models have implicated changes in macroautophagy pathways in Parkinson’s disease [137–144], Gaucher disease [145], Niemann-Pick Type C1 disease [146–148] and diseases affecting motor neurons, including ALS [149,150], spinal and bulbar muscular atrophy (SBMA) [151], Brown- Vialetto disease [152], Charcot-Marie-Tooth 2A [153] and hereditary spastic paraplegia [154] PubMed:29758300
BEL Commons is developed and maintained in an academic capacity by Charles Tapley Hoyt and Daniel Domingo-Fernández at the Fraunhofer SCAI Department of Bioinformatics with support from the IMI project, AETIONOMY. It is built on top of PyBEL, an open source project. Please feel free to contact us here to give us feedback or report any issues. Also, see our Publishing Notes and Data Protection information.
If you find BEL Commons useful in your work, please consider citing: Hoyt, C. T., Domingo-Fernández, D., & Hofmann-Apitius, M. (2018). BEL Commons: an environment for exploration and analysis of networks encoded in Biological Expression Language. Database, 2018(3), 1–11.