complex(a(HBP:"amyloid-beta derived diffusible ligands"), a(MESH:Neurons))
Moreover, the presence of large extracellular aggregates in NU1-treated cultures (Fig. 5N) suggests that the antibody effectively sequesters ADDLs and prevents their interactions with neurons (Fig. 5O). No inhibition of ADDL binding was associated with PP1 and LY294002 (Fig. 5H, I, K and L, respectively), but both kinase inhibitors effectively blocked ADDL-induced tau hyperphosphorylation (Fig. 5G and J). PubMed:17403556
Importantly, pre-incubation of AD brain extracts with NU1 significantly blocked the increase in Thr231 phosphotau immunofluorescence (Fig. 6G), establishing the tau hyperphosphorylation was induced by Abeta oligomers in the AD brain extracts. NU1 also prevented the binding of brain-derived ADDLs to synaptic hot-spots (Fig. 6H and I). In NU1-treated cultures, the presence of large extracellular aggregates indicates that the antibody sequesters ADDLs and prevents their interactions with neurons (Fig. 6I). PubMed:17403556
BEL Commons is developed and maintained in an academic capacity by Charles Tapley Hoyt and Daniel Domingo-Fernández at the Fraunhofer SCAI Department of Bioinformatics with support from the IMI project, AETIONOMY. It is built on top of PyBEL, an open source project. Please feel free to contact us here to give us feedback or report any issues. Also, see our Publishing Notes and Data Protection information.
If you find BEL Commons useful in your work, please consider citing: Hoyt, C. T., Domingo-Fernández, D., & Hofmann-Apitius, M. (2018). BEL Commons: an environment for exploration and analysis of networks encoded in Biological Expression Language. Database, 2018(3), 1–11.