a(MESH:Skin)
Recent studies have supported a role for ERK and CREB activity in neural plasticity associated with nicotine addiction (71, 381, 484). It has also been proposed that the ERK and JAK-2/STAT-3 signaling pathways contribute to the toxic effects of nicotine in skin cells (42), and other pathways contribute to the effects of nicotine and other nicotinic ligands on inflammatory responses as described below. PubMed:19126755
Recent studies have supported a role for ERK and CREB activity in neural plasticity associated with nicotine addiction (71, 381, 484). It has also been proposed that the ERK and JAK-2/STAT-3 signaling pathways contribute to the toxic effects of nicotine in skin cells (42), and other pathways contribute to the effects of nicotine and other nicotinic ligands on inflammatory responses as described below. PubMed:19126755
By measuring Aβ levels in superior vena cava and inferior vena cava, it is clear thatAβ levels are getting lower and lower along the direction of the vein blood flow, and the contents of Aβ40 and total Aβ in artery are significantly less than those in vein, suggesting a part of Aβ40 and total Aβ can be cleared by peripheral organs and tissues, such as the liver, kidney, skin, and the gastrointestinal tract, although there is no change in Aβ42 concentrations (Xiang et al. 2015) PubMed:29626319
By measuring Aβ levels in superior vena cava and inferior vena cava, it is clear thatAβ levels are getting lower and lower along the direction of the vein blood flow, and the contents of Aβ40 and total Aβ in artery are significantly less than those in vein, suggesting a part of Aβ40 and total Aβ can be cleared by peripheral organs and tissues, such as the liver, kidney, skin, and the gastrointestinal tract, although there is no change in Aβ42 concentrations (Xiang et al. 2015) PubMed:29626319
By measuring Aβ levels in superior vena cava and inferior vena cava, it is clear thatAβ levels are getting lower and lower along the direction of the vein blood flow, and the contents of Aβ40 and total Aβ in artery are significantly less than those in vein, suggesting a part of Aβ40 and total Aβ can be cleared by peripheral organs and tissues, such as the liver, kidney, skin, and the gastrointestinal tract, although there is no change in Aβ42 concentrations (Xiang et al. 2015) PubMed:29626319
BEL Commons is developed and maintained in an academic capacity by Charles Tapley Hoyt and Daniel Domingo-Fernández at the Fraunhofer SCAI Department of Bioinformatics with support from the IMI project, AETIONOMY. It is built on top of PyBEL, an open source project. Please feel free to contact us here to give us feedback or report any issues. Also, see our Publishing Notes and Data Protection information.
If you find BEL Commons useful in your work, please consider citing: Hoyt, C. T., Domingo-Fernández, D., & Hofmann-Apitius, M. (2018). BEL Commons: an environment for exploration and analysis of networks encoded in Biological Expression Language. Database, 2018(3), 1–11.