a(CHEBI:cholesterol)
Cholesterol is known to be crucial to nAChR function, and it interacts within the transmembrane domain between TM1, TM3 and TM4 (ReF. 57). PubMed:19721446
In this regard, elevated bCTF levels induced by APP overexpression, elevated dietary cholesterol, or overexpression of its receptor ApoE (particularly ApoE 14) can upregulate endocytosis and enlarge endosomes (Laifenfeld et al. 2007; Chen et al. 2010; Cossec et al. 2010), leading to impaired endosome retrograde transport (S Kim and RA Nixon, unpubl.). PubMed:22908190
In this regard, elevated bCTF levels induced by APP overexpression, elevated dietary cholesterol, or overexpression of its receptor ApoE (particularly ApoE 14) can upregulate endocytosis and enlarge endosomes (Laifenfeld et al. 2007; Chen et al. 2010; Cossec et al. 2010), leading to impaired endosome retrograde transport (S Kim and RA Nixon, unpubl.). PubMed:22908190
Elevated cholesterol, oxy-cholesterol, lyso-phospholipid and decreased phosphatidylserine were found in atheromatous lipids compared to controls (supplemental Table II). PubMed:20378845
LXR receptors are activated by oxysterols, most prominently hydroxylated forms of cholesterol, and play a critical role in the control of whole body cholesterol homeostasis, as well as exerting potent anti-inflammatory actions [26]. PubMed:21718217
Cholesterol is known to be crucial to nAChR function, and it interacts within the transmembrane domain between TM1, TM3 and TM4 (ReF. 57). PubMed:19721446
Cellular cholesterol can directly impact the level of Aβ, as decreases in cholesterol levels inhibit the generation of Aβ peptides through direct modulation of γ-secretase activity [78,79]. PubMed:29758300
Cellular cholesterol can directly impact the level of Aβ, as decreases in cholesterol levels inhibit the generation of Aβ peptides through direct modulation of γ-secretase activity [78,79]. PubMed:29758300
In this regard, elevated bCTF levels induced by APP overexpression, elevated dietary cholesterol, or overexpression of its receptor ApoE (particularly ApoE 14) can upregulate endocytosis and enlarge endosomes (Laifenfeld et al. 2007; Chen et al. 2010; Cossec et al. 2010), leading to impaired endosome retrograde transport (S Kim and RA Nixon, unpubl.). PubMed:22908190
In this regard, elevated bCTF levels induced by APP overexpression, elevated dietary cholesterol, or overexpression of its receptor ApoE (particularly ApoE 14) can upregulate endocytosis and enlarge endosomes (Laifenfeld et al. 2007; Chen et al. 2010; Cossec et al. 2010), leading to impaired endosome retrograde transport (S Kim and RA Nixon, unpubl.). PubMed:22908190
In this regard, elevated bCTF levels induced by APP overexpression, elevated dietary cholesterol, or overexpression of its receptor ApoE (particularly ApoE 14) can upregulate endocytosis and enlarge endosomes (Laifenfeld et al. 2007; Chen et al. 2010; Cossec et al. 2010), leading to impaired endosome retrograde transport (S Kim and RA Nixon, unpubl.). PubMed:22908190
Elevated cholesterol, oxy-cholesterol, lyso-phospholipid and decreased phosphatidylserine were found in atheromatous lipids compared to controls (supplemental Table II). PubMed:20378845
BEL Commons is developed and maintained in an academic capacity by Charles Tapley Hoyt and Daniel Domingo-Fernández at the Fraunhofer SCAI Department of Bioinformatics with support from the IMI project, AETIONOMY. It is built on top of PyBEL, an open source project. Please feel free to contact us here to give us feedback or report any issues. Also, see our Publishing Notes and Data Protection information.
If you find BEL Commons useful in your work, please consider citing: Hoyt, C. T., Domingo-Fernández, D., & Hofmann-Apitius, M. (2018). BEL Commons: an environment for exploration and analysis of networks encoded in Biological Expression Language. Database, 2018(3), 1–11.