Equivalencies: 0 | Classes: 0 | Children: 0 | Explore

Entity

Name
Prefrontal Cortex
Namespace
mesh
Namespace Version
20181007
Namespace URL
https://raw.githubusercontent.com/pharmacome/terminology/8ccfed235e418e4c8aa576f9a5ef0f838e794c7f/external/mesh-names.belns

Appears in Networks 2

Activation of M1 and M4 muscarinic receptors as potential treatments for Alzheimer's disease and schizophrenia. v1.0.0

This file encodes the article Activation of M1 and M4 muscarinic receptors as potential treatments for Alzheimer’s disease and schizophrenia by Choi et al, 2014

In-Edges 4

bp(GO:cognition) association a(MESH:"Prefrontal Cortex") View Subject | View Object

In brain slice electrophysiology studies, BQCA enhanced excitatory postsynaptic currents in medial prefrontal cortical neurons,69 an area critical for higher cognitive, learning, and memory functions.70 In pre-clinical animal studies, BQCA reversed scopolamine-impaired contextual fear conditioning and rescued medial prefrontal cortex-dependent discrimination reversal learning deficits in a transgenic mouse model of AD. PubMed:24511233

bp(GO:learning) association a(MESH:"Prefrontal Cortex") View Subject | View Object

In brain slice electrophysiology studies, BQCA enhanced excitatory postsynaptic currents in medial prefrontal cortical neurons,69 an area critical for higher cognitive, learning, and memory functions.70 In pre-clinical animal studies, BQCA reversed scopolamine-impaired contextual fear conditioning and rescued medial prefrontal cortex-dependent discrimination reversal learning deficits in a transgenic mouse model of AD. PubMed:24511233

bp(GO:memory) association a(MESH:"Prefrontal Cortex") View Subject | View Object

In brain slice electrophysiology studies, BQCA enhanced excitatory postsynaptic currents in medial prefrontal cortical neurons,69 an area critical for higher cognitive, learning, and memory functions.70 In pre-clinical animal studies, BQCA reversed scopolamine-impaired contextual fear conditioning and rescued medial prefrontal cortex-dependent discrimination reversal learning deficits in a transgenic mouse model of AD. PubMed:24511233

path(MESH:"Alzheimer Disease") association a(MESH:"Prefrontal Cortex") View Subject | View Object

The gross pathological changes consist of brain atrophy, particularly in the hippocampal formation, temporal lobes and parietotemporal cortices, accompanied by cortical thinning, enlarged ventricles and white matter abnormalities, as evident on MRI. PubMed:26195256

Out-Edges 4

a(MESH:"Prefrontal Cortex") association bp(GO:cognition) View Subject | View Object

In brain slice electrophysiology studies, BQCA enhanced excitatory postsynaptic currents in medial prefrontal cortical neurons,69 an area critical for higher cognitive, learning, and memory functions.70 In pre-clinical animal studies, BQCA reversed scopolamine-impaired contextual fear conditioning and rescued medial prefrontal cortex-dependent discrimination reversal learning deficits in a transgenic mouse model of AD. PubMed:24511233

a(MESH:"Prefrontal Cortex") association bp(GO:learning) View Subject | View Object

In brain slice electrophysiology studies, BQCA enhanced excitatory postsynaptic currents in medial prefrontal cortical neurons,69 an area critical for higher cognitive, learning, and memory functions.70 In pre-clinical animal studies, BQCA reversed scopolamine-impaired contextual fear conditioning and rescued medial prefrontal cortex-dependent discrimination reversal learning deficits in a transgenic mouse model of AD. PubMed:24511233

a(MESH:"Prefrontal Cortex") association bp(GO:memory) View Subject | View Object

In brain slice electrophysiology studies, BQCA enhanced excitatory postsynaptic currents in medial prefrontal cortical neurons,69 an area critical for higher cognitive, learning, and memory functions.70 In pre-clinical animal studies, BQCA reversed scopolamine-impaired contextual fear conditioning and rescued medial prefrontal cortex-dependent discrimination reversal learning deficits in a transgenic mouse model of AD. PubMed:24511233

a(MESH:"Prefrontal Cortex") association path(MESH:"Alzheimer Disease") View Subject | View Object

The gross pathological changes consist of brain atrophy, particularly in the hippocampal formation, temporal lobes and parietotemporal cortices, accompanied by cortical thinning, enlarged ventricles and white matter abnormalities, as evident on MRI. PubMed:26195256

About

BEL Commons is developed and maintained in an academic capacity by Charles Tapley Hoyt and Daniel Domingo-Fernández at the Fraunhofer SCAI Department of Bioinformatics with support from the IMI project, AETIONOMY. It is built on top of PyBEL, an open source project. Please feel free to contact us here to give us feedback or report any issues. Also, see our Publishing Notes and Data Protection information.

If you find BEL Commons useful in your work, please consider citing: Hoyt, C. T., Domingo-Fernández, D., & Hofmann-Apitius, M. (2018). BEL Commons: an environment for exploration and analysis of networks encoded in Biological Expression Language. Database, 2018(3), 1–11.