a(HM:"oxidative modification of atheroma lipid")
Moreover, the heme-binding protein, hemopexin, also suppressed the oxidation of lipid by ferro- and ferrihemoglobin, indicating the necessity for heme release from ferrihemoglobin for this oxidative process. PubMed:20378845
Both the hemoglobin-binding protein, haptoglobin,27 and the heme-binding protein, hemopexin, inhibited such oxidative modification of lipids indicating the importance of heme loss and scission in hemoglobin-provoked oxidation of lipids derived from atheromatous lesions. PubMed:20378845
Hemoglobinmediated oxidative modification of lipid extracted from atheromatous lesions was inhibited by haptoglobin (Fig 4A). PubMed:20378845
Both the hemoglobin-binding protein, haptoglobin,27 and the heme-binding protein, hemopexin, inhibited such oxidative modification of lipids indicating the importance of heme loss and scission in hemoglobin-provoked oxidation of lipids derived from atheromatous lesions. PubMed:20378845
BEL Commons is developed and maintained in an academic capacity by Charles Tapley Hoyt and Daniel Domingo-Fernández at the Fraunhofer SCAI Department of Bioinformatics with support from the IMI project, AETIONOMY. It is built on top of PyBEL, an open source project. Please feel free to contact us here to give us feedback or report any issues. Also, see our Publishing Notes and Data Protection information.
If you find BEL Commons useful in your work, please consider citing: Hoyt, C. T., Domingo-Fernández, D., & Hofmann-Apitius, M. (2018). BEL Commons: an environment for exploration and analysis of networks encoded in Biological Expression Language. Database, 2018(3), 1–11.