bp(GO:"protein K63-linked ubiquitination")
It has been reported recently that while the monomeric form of UCH-L1 catalyzes deubiquitination, the dimers display a ubiquitin ligase activity that generates ubiquitin-K63 bonds (Liu et al., 2002). PubMed:14556719
For example, immunocytochemistry showing the presence of K63- linked polyubiquitin in a fraction of the NFTs in AD cortex (Paine et al. 2009) suggests an active involvement of autophagy in the mechanism of AD. PubMed:22908190
Conjugation to other Lys residues, Lys63 for example, serves nonproteolytic functions of the system, such as activation of transcription PubMed:14556719
For example, immunocytochemistry showing the presence of K63- linked polyubiquitin in a fraction of the NFTs in AD cortex (Paine et al. 2009) suggests an active involvement of autophagy in the mechanism of AD. PubMed:22908190
Specifically, it is suggested that K63-linked polyubiquitin chains recruit p62 and HDAC6 providing a signal for autophagic degradation [92,93]. PubMed:18930136
Specifically, it is suggested that K63-linked polyubiquitin chains recruit p62 and HDAC6 providing a signal for autophagic degradation [92,93]. PubMed:18930136
Specifically, it is suggested that K63-linked polyubiquitin chains recruit p62 and HDAC6 providing a signal for autophagic degradation [92,93]. PubMed:18930136
BEL Commons is developed and maintained in an academic capacity by Charles Tapley Hoyt and Daniel Domingo-Fernández at the Fraunhofer SCAI Department of Bioinformatics with support from the IMI project, AETIONOMY. It is built on top of PyBEL, an open source project. Please feel free to contact us here to give us feedback or report any issues. Also, see our Publishing Notes and Data Protection information.
If you find BEL Commons useful in your work, please consider citing: Hoyt, C. T., Domingo-Fernández, D., & Hofmann-Apitius, M. (2018). BEL Commons: an environment for exploration and analysis of networks encoded in Biological Expression Language. Database, 2018(3), 1–11.