Equivalencies: 0 | Classes: 0 | Children: 0 | Explore

Appears in Networks 1

albuquerque2009 v1.0.0

This file encodes the article Mammalian Nicotinic Acetylcholine Receptors: From Structure to Function by Albuquerque et al, 2009

In-Edges 11

a(CHEBI:"calcium(2+)", loc(GO:intracellular)) increases a(CHEBI:anandamide) View Subject | View Object

There is evidence that anandamide is produced by postsynaptic neurons in response to elevated intracellular Ca2+ levels. For instance, concomitant activation of alpha7 nAChRs and NMDA receptors triggers the production of anandamine in postsynaptic neurons (448). Anandamine, then, functions as a retrograde messenger and regulates synaptic transmission by interacting with specific receptors in the presynaptic neurons/terminals (498). PubMed:19126755

Appears in Networks:
Annotations
MeSH
Neurons
Text Location
Review

a(MESH:"Receptors, Serotonin") association a(CHEBI:anandamide) View Subject | View Object

Anandamide, a compound originally isolated from porcine brain extracts, is known to interact with canabinoid receptors 1 and 2 in the brain (120, 159). However, anandamide interacts with numerous other receptors, including voltage-gated Ca2+ channels (357), voltage-gated K+ channels (293), 5-HT3 receptors (358), kainate receptors (3), and nAChRs (356). At nanomolar concentrations, anandamine blocks noncompetitively and voltage independently the activation of alpha7 nAChRs ectopically expressed in Xenopus oocytes (356). It also inhibits the activity of alpha4beta2 nAChRs expressed in SH-EP1 cells (443). PubMed:19126755

Appears in Networks:
Annotations
Text Location
Review

complex(GO:"voltage-gated calcium channel complex") association a(CHEBI:anandamide) View Subject | View Object

Anandamide, a compound originally isolated from porcine brain extracts, is known to interact with canabinoid receptors 1 and 2 in the brain (120, 159). However, anandamide interacts with numerous other receptors, including voltage-gated Ca2+ channels (357), voltage-gated K+ channels (293), 5-HT3 receptors (358), kainate receptors (3), and nAChRs (356). At nanomolar concentrations, anandamine blocks noncompetitively and voltage independently the activation of alpha7 nAChRs ectopically expressed in Xenopus oocytes (356). It also inhibits the activity of alpha4beta2 nAChRs expressed in SH-EP1 cells (443). PubMed:19126755

Appears in Networks:
Annotations
Text Location
Review

act(p(HGNCGENEFAMILY:"Cholinergic receptors nicotinic subunits")) association a(CHEBI:anandamide) View Subject | View Object

Other endogenous ligands that impact on the activity of nAChRs noncompetitively and voltage independently include the amyloid beta peptide 1-42 (Abeta1-42; Refs. 123, 376) and the canabinoid anandamide (356, 442). PubMed:19126755

Appears in Networks:
Annotations
Text Location
Review

p(HGNCGENEFAMILY:"Cholinergic receptors nicotinic subunits") association a(CHEBI:anandamide) View Subject | View Object

Anandamide, a compound originally isolated from porcine brain extracts, is known to interact with canabinoid receptors 1 and 2 in the brain (120, 159). However, anandamide interacts with numerous other receptors, including voltage-gated Ca2+ channels (357), voltage-gated K+ channels (293), 5-HT3 receptors (358), kainate receptors (3), and nAChRs (356). At nanomolar concentrations, anandamine blocks noncompetitively and voltage independently the activation of alpha7 nAChRs ectopically expressed in Xenopus oocytes (356). It also inhibits the activity of alpha4beta2 nAChRs expressed in SH-EP1 cells (443). PubMed:19126755

Appears in Networks:
Annotations
Text Location
Review

act(p(HGNC:CHRNA7)) increases a(CHEBI:anandamide) View Subject | View Object

There is evidence that anandamide is produced by postsynaptic neurons in response to elevated intracellular Ca2+ levels. For instance, concomitant activation of alpha7 nAChRs and NMDA receptors triggers the production of anandamine in postsynaptic neurons (448). Anandamine, then, functions as a retrograde messenger and regulates synaptic transmission by interacting with specific receptors in the presynaptic neurons/terminals (498). PubMed:19126755

Appears in Networks:
Annotations
MeSH
Neurons
Text Location
Review

p(HGNC:CNR1) association a(CHEBI:anandamide) View Subject | View Object

Anandamide, a compound originally isolated from porcine brain extracts, is known to interact with canabinoid receptors 1 and 2 in the brain (120, 159). However, anandamide interacts with numerous other receptors, including voltage-gated Ca2+ channels (357), voltage-gated K+ channels (293), 5-HT3 receptors (358), kainate receptors (3), and nAChRs (356). At nanomolar concentrations, anandamine blocks noncompetitively and voltage independently the activation of alpha7 nAChRs ectopically expressed in Xenopus oocytes (356). It also inhibits the activity of alpha4beta2 nAChRs expressed in SH-EP1 cells (443). PubMed:19126755

Appears in Networks:
Annotations
Text Location
Review

p(HGNC:CNR2) association a(CHEBI:anandamide) View Subject | View Object

Anandamide, a compound originally isolated from porcine brain extracts, is known to interact with canabinoid receptors 1 and 2 in the brain (120, 159). However, anandamide interacts with numerous other receptors, including voltage-gated Ca2+ channels (357), voltage-gated K+ channels (293), 5-HT3 receptors (358), kainate receptors (3), and nAChRs (356). At nanomolar concentrations, anandamine blocks noncompetitively and voltage independently the activation of alpha7 nAChRs ectopically expressed in Xenopus oocytes (356). It also inhibits the activity of alpha4beta2 nAChRs expressed in SH-EP1 cells (443). PubMed:19126755

Appears in Networks:
Annotations
Text Location
Review

act(p(HGNCGENEFAMILY:"Glutamate ionotropic receptor NMDA type subunits")) increases a(CHEBI:anandamide) View Subject | View Object

There is evidence that anandamide is produced by postsynaptic neurons in response to elevated intracellular Ca2+ levels. For instance, concomitant activation of alpha7 nAChRs and NMDA receptors triggers the production of anandamine in postsynaptic neurons (448). Anandamine, then, functions as a retrograde messenger and regulates synaptic transmission by interacting with specific receptors in the presynaptic neurons/terminals (498). PubMed:19126755

Appears in Networks:
Annotations
MeSH
Neurons
Text Location
Review

p(HGNCGENEFAMILY:"Glutamate ionotropic receptor kainate type subunits") association a(CHEBI:anandamide) View Subject | View Object

Anandamide, a compound originally isolated from porcine brain extracts, is known to interact with canabinoid receptors 1 and 2 in the brain (120, 159). However, anandamide interacts with numerous other receptors, including voltage-gated Ca2+ channels (357), voltage-gated K+ channels (293), 5-HT3 receptors (358), kainate receptors (3), and nAChRs (356). At nanomolar concentrations, anandamine blocks noncompetitively and voltage independently the activation of alpha7 nAChRs ectopically expressed in Xenopus oocytes (356). It also inhibits the activity of alpha4beta2 nAChRs expressed in SH-EP1 cells (443). PubMed:19126755

Appears in Networks:
Annotations
Text Location
Review

p(HGNCGENEFAMILY:"Potassium voltage-gated channels") association a(CHEBI:anandamide) View Subject | View Object

Anandamide, a compound originally isolated from porcine brain extracts, is known to interact with canabinoid receptors 1 and 2 in the brain (120, 159). However, anandamide interacts with numerous other receptors, including voltage-gated Ca2+ channels (357), voltage-gated K+ channels (293), 5-HT3 receptors (358), kainate receptors (3), and nAChRs (356). At nanomolar concentrations, anandamine blocks noncompetitively and voltage independently the activation of alpha7 nAChRs ectopically expressed in Xenopus oocytes (356). It also inhibits the activity of alpha4beta2 nAChRs expressed in SH-EP1 cells (443). PubMed:19126755

Appears in Networks:
Annotations
Text Location
Review

Out-Edges 11

a(CHEBI:anandamide) association act(p(HGNCGENEFAMILY:"Cholinergic receptors nicotinic subunits")) View Subject | View Object

Other endogenous ligands that impact on the activity of nAChRs noncompetitively and voltage independently include the amyloid beta peptide 1-42 (Abeta1-42; Refs. 123, 376) and the canabinoid anandamide (356, 442). PubMed:19126755

Appears in Networks:
Annotations
Text Location
Review

a(CHEBI:anandamide) association p(HGNCGENEFAMILY:"Cholinergic receptors nicotinic subunits") View Subject | View Object

Anandamide, a compound originally isolated from porcine brain extracts, is known to interact with canabinoid receptors 1 and 2 in the brain (120, 159). However, anandamide interacts with numerous other receptors, including voltage-gated Ca2+ channels (357), voltage-gated K+ channels (293), 5-HT3 receptors (358), kainate receptors (3), and nAChRs (356). At nanomolar concentrations, anandamine blocks noncompetitively and voltage independently the activation of alpha7 nAChRs ectopically expressed in Xenopus oocytes (356). It also inhibits the activity of alpha4beta2 nAChRs expressed in SH-EP1 cells (443). PubMed:19126755

Appears in Networks:
Annotations
Text Location
Review

a(CHEBI:anandamide) association p(HGNC:CNR1) View Subject | View Object

Anandamide, a compound originally isolated from porcine brain extracts, is known to interact with canabinoid receptors 1 and 2 in the brain (120, 159). However, anandamide interacts with numerous other receptors, including voltage-gated Ca2+ channels (357), voltage-gated K+ channels (293), 5-HT3 receptors (358), kainate receptors (3), and nAChRs (356). At nanomolar concentrations, anandamine blocks noncompetitively and voltage independently the activation of alpha7 nAChRs ectopically expressed in Xenopus oocytes (356). It also inhibits the activity of alpha4beta2 nAChRs expressed in SH-EP1 cells (443). PubMed:19126755

Appears in Networks:
Annotations
Text Location
Review

a(CHEBI:anandamide) association p(HGNC:CNR2) View Subject | View Object

Anandamide, a compound originally isolated from porcine brain extracts, is known to interact with canabinoid receptors 1 and 2 in the brain (120, 159). However, anandamide interacts with numerous other receptors, including voltage-gated Ca2+ channels (357), voltage-gated K+ channels (293), 5-HT3 receptors (358), kainate receptors (3), and nAChRs (356). At nanomolar concentrations, anandamine blocks noncompetitively and voltage independently the activation of alpha7 nAChRs ectopically expressed in Xenopus oocytes (356). It also inhibits the activity of alpha4beta2 nAChRs expressed in SH-EP1 cells (443). PubMed:19126755

Appears in Networks:
Annotations
Text Location
Review

a(CHEBI:anandamide) association complex(GO:"voltage-gated calcium channel complex") View Subject | View Object

Anandamide, a compound originally isolated from porcine brain extracts, is known to interact with canabinoid receptors 1 and 2 in the brain (120, 159). However, anandamide interacts with numerous other receptors, including voltage-gated Ca2+ channels (357), voltage-gated K+ channels (293), 5-HT3 receptors (358), kainate receptors (3), and nAChRs (356). At nanomolar concentrations, anandamine blocks noncompetitively and voltage independently the activation of alpha7 nAChRs ectopically expressed in Xenopus oocytes (356). It also inhibits the activity of alpha4beta2 nAChRs expressed in SH-EP1 cells (443). PubMed:19126755

Appears in Networks:
Annotations
Text Location
Review

a(CHEBI:anandamide) association p(HGNCGENEFAMILY:"Potassium voltage-gated channels") View Subject | View Object

Anandamide, a compound originally isolated from porcine brain extracts, is known to interact with canabinoid receptors 1 and 2 in the brain (120, 159). However, anandamide interacts with numerous other receptors, including voltage-gated Ca2+ channels (357), voltage-gated K+ channels (293), 5-HT3 receptors (358), kainate receptors (3), and nAChRs (356). At nanomolar concentrations, anandamine blocks noncompetitively and voltage independently the activation of alpha7 nAChRs ectopically expressed in Xenopus oocytes (356). It also inhibits the activity of alpha4beta2 nAChRs expressed in SH-EP1 cells (443). PubMed:19126755

Appears in Networks:
Annotations
Text Location
Review

a(CHEBI:anandamide) association a(MESH:"Receptors, Serotonin") View Subject | View Object

Anandamide, a compound originally isolated from porcine brain extracts, is known to interact with canabinoid receptors 1 and 2 in the brain (120, 159). However, anandamide interacts with numerous other receptors, including voltage-gated Ca2+ channels (357), voltage-gated K+ channels (293), 5-HT3 receptors (358), kainate receptors (3), and nAChRs (356). At nanomolar concentrations, anandamine blocks noncompetitively and voltage independently the activation of alpha7 nAChRs ectopically expressed in Xenopus oocytes (356). It also inhibits the activity of alpha4beta2 nAChRs expressed in SH-EP1 cells (443). PubMed:19126755

Appears in Networks:
Annotations
Text Location
Review

a(CHEBI:anandamide) association p(HGNCGENEFAMILY:"Glutamate ionotropic receptor kainate type subunits") View Subject | View Object

Anandamide, a compound originally isolated from porcine brain extracts, is known to interact with canabinoid receptors 1 and 2 in the brain (120, 159). However, anandamide interacts with numerous other receptors, including voltage-gated Ca2+ channels (357), voltage-gated K+ channels (293), 5-HT3 receptors (358), kainate receptors (3), and nAChRs (356). At nanomolar concentrations, anandamine blocks noncompetitively and voltage independently the activation of alpha7 nAChRs ectopically expressed in Xenopus oocytes (356). It also inhibits the activity of alpha4beta2 nAChRs expressed in SH-EP1 cells (443). PubMed:19126755

Appears in Networks:
Annotations
Text Location
Review

a(CHEBI:anandamide) decreases act(p(HGNC:CHRNA7)) View Subject | View Object

Anandamide, a compound originally isolated from porcine brain extracts, is known to interact with canabinoid receptors 1 and 2 in the brain (120, 159). However, anandamide interacts with numerous other receptors, including voltage-gated Ca2+ channels (357), voltage-gated K+ channels (293), 5-HT3 receptors (358), kainate receptors (3), and nAChRs (356). At nanomolar concentrations, anandamine blocks noncompetitively and voltage independently the activation of alpha7 nAChRs ectopically expressed in Xenopus oocytes (356). It also inhibits the activity of alpha4beta2 nAChRs expressed in SH-EP1 cells (443). PubMed:19126755

Appears in Networks:
Annotations
Text Location
Review

a(CHEBI:anandamide) decreases act(p(HBP:"alpha-4 beta-2 nAChR")) View Subject | View Object

Anandamide, a compound originally isolated from porcine brain extracts, is known to interact with canabinoid receptors 1 and 2 in the brain (120, 159). However, anandamide interacts with numerous other receptors, including voltage-gated Ca2+ channels (357), voltage-gated K+ channels (293), 5-HT3 receptors (358), kainate receptors (3), and nAChRs (356). At nanomolar concentrations, anandamine blocks noncompetitively and voltage independently the activation of alpha7 nAChRs ectopically expressed in Xenopus oocytes (356). It also inhibits the activity of alpha4beta2 nAChRs expressed in SH-EP1 cells (443). PubMed:19126755

Appears in Networks:
Annotations
Text Location
Review

a(CHEBI:anandamide) regulates bp(GO:"chemical synaptic transmission, postsynaptic") View Subject | View Object

There is evidence that anandamide is produced by postsynaptic neurons in response to elevated intracellular Ca2+ levels. For instance, concomitant activation of alpha7 nAChRs and NMDA receptors triggers the production of anandamine in postsynaptic neurons (448). Anandamine, then, functions as a retrograde messenger and regulates synaptic transmission by interacting with specific receptors in the presynaptic neurons/terminals (498). PubMed:19126755

Appears in Networks:
Annotations
MeSH
Neurons
Text Location
Review

About

BEL Commons is developed and maintained in an academic capacity by Charles Tapley Hoyt and Daniel Domingo-Fernández at the Fraunhofer SCAI Department of Bioinformatics with support from the IMI project, AETIONOMY. It is built on top of PyBEL, an open source project. Please feel free to contact us here to give us feedback or report any issues. Also, see our Publishing Notes and Data Protection information.

If you find BEL Commons useful in your work, please consider citing: Hoyt, C. T., Domingo-Fernández, D., & Hofmann-Apitius, M. (2018). BEL Commons: an environment for exploration and analysis of networks encoded in Biological Expression Language. Database, 2018(3), 1–11.