Equivalencies: 0 | Classes: 0 | Children: 0 | Explore

Appears in Networks 1

In-Edges 2

bp(GO:"MAPK cascade") increases act(p(HGNC:MYC)) View Subject | View Object

Application of nicotine to rat microglia results in the up-regulated expression of cyclooxygenase-2 and prostaglandin E2 (De Simone et al., 2005). Signaling pathways downstream to the MAPK pathway are similarly well placed to effect changes in gene expression. For example, alpha7-dependent activation of the MAPK pathway is known to activate c-Myc (Liu et al., 2007), a protooncogene whose transcription product sensitizes cells to pro-apoptotic stimuli. PubMed:19293145

bp(GO:"MAPK cascade") increases act(p(HGNC:MYC)) View Subject | View Object

Nicotine also activates ERK in non-neuronal cells such as pancreatic acinar cells (Chowdhury et al., 2007) and vascular smooth muscle cells (Kanda and Watanabe, 2007), although it is not known in those cases which nAChR subtypes are involved. In the cortex and hippocampus of mice, nicotine’s inhibition of MAPK (shown by RNAi reduction of alpha7 expression to be alpha7-dependent) prevents activation of nuclear factor- kappaB and c-Myc, also thereby reducing the activity of inducible nitric-oxide synthetase and NO production and decreasing Abeta production (Liu et al., 2007). PubMed:19293145

Out-Edges 1

act(p(HGNC:MYC)) increases bp(GO:"apoptotic process") View Subject | View Object

Application of nicotine to rat microglia results in the up-regulated expression of cyclooxygenase-2 and prostaglandin E2 (De Simone et al., 2005). Signaling pathways downstream to the MAPK pathway are similarly well placed to effect changes in gene expression. For example, alpha7-dependent activation of the MAPK pathway is known to activate c-Myc (Liu et al., 2007), a protooncogene whose transcription product sensitizes cells to pro-apoptotic stimuli. PubMed:19293145

About

BEL Commons is developed and maintained in an academic capacity by Charles Tapley Hoyt and Daniel Domingo-Fernández at the Fraunhofer SCAI Department of Bioinformatics with support from the IMI project, AETIONOMY. It is built on top of PyBEL, an open source project. Please feel free to contact us here to give us feedback or report any issues. Also, see our Publishing Notes and Data Protection information.

If you find BEL Commons useful in your work, please consider citing: Hoyt, C. T., Domingo-Fernández, D., & Hofmann-Apitius, M. (2018). BEL Commons: an environment for exploration and analysis of networks encoded in Biological Expression Language. Database, 2018(3), 1–11.