Dopaminergic Neurons
Parkinson’s disease (PD) is characterized by selective damage to dopaminergic nigrostriatal neurons and is clinically revealed by motor deficits, including rigidity, tremor, and bradykinesia. Dopamine replacement therapy (usually with L-dopa) is the most common treatment, although this drug loses efficacy over time. PubMed:19126755
As illustrated in Figure 8, KYNA-induced reduction of extracellular dopamine levels can be explained by the inhibition of tonically active alpha7 nAChRs in the dopaminergic neurons within the VTA and/or in cortical glutamatergic terminals that synapse onto striatal neurons. VTA dopaminergic neurons represent the major dopaminergic input to the nucleus accumbens. PubMed:19126755
Parkinson’s disease (PD) is characterized by selective damage to dopaminergic nigrostriatal neurons and is clinically revealed by motor deficits, including rigidity, tremor, and bradykinesia. Dopamine replacement therapy (usually with L-dopa) is the most common treatment, although this drug loses efficacy over time. PubMed:19126755
Parkinson’s disease (PD) is characterized by selective damage to dopaminergic nigrostriatal neurons and is clinically revealed by motor deficits, including rigidity, tremor, and bradykinesia. Dopamine replacement therapy (usually with L-dopa) is the most common treatment, although this drug loses efficacy over time. PubMed:19126755
Parkinson’s disease (PD) is characterized by selective damage to dopaminergic nigrostriatal neurons and is clinically revealed by motor deficits, including rigidity, tremor, and bradykinesia. Dopamine replacement therapy (usually with L-dopa) is the most common treatment, although this drug loses efficacy over time. PubMed:19126755
BEL Commons is developed and maintained in an academic capacity by Charles Tapley Hoyt and Daniel Domingo-Fernández at the Fraunhofer SCAI Department of Bioinformatics with support from the IMI project, AETIONOMY. It is built on top of PyBEL, an open source project. Please feel free to contact us here to give us feedback or report any issues. Also, see our Publishing Notes and Data Protection information.
If you find BEL Commons useful in your work, please consider citing: Hoyt, C. T., Domingo-Fernández, D., & Hofmann-Apitius, M. (2018). BEL Commons: an environment for exploration and analysis of networks encoded in Biological Expression Language. Database, 2018(3), 1–11.