Equivalencies: 0 | Classes: 0 | Children: 0 | Explore

Appears in Networks 1

Tau Modifications v1.9.5

Tau Modifications Sections of NESTOR

In-Edges 10

a(CHEBI:"amyloid-beta") positiveCorrelation p(MGI:Syk) View Subject | View Object

We further validated Syk as a target-regulating Aβ by showing that pharmacological inhibition of Syk or down-regulation of Syk expression reduces Aβ production and increases the clearance of Aβ across the BBB mimicking (-)-nilvadipine effects. Moreover, treatment of transgenic mice overexpressing Aβ and transgenic Tau P301S mice with a selective Syk inhibitor respectively decreased brain Aβ accumulation and Tau hyperphosphorylation at multiple AD relevant epitopes. PubMed:25331948

Appears in Networks:

p(MGI:Mapt) positiveCorrelation p(MGI:Syk) View Subject | View Object

Interestingly, Syk upregulation in SH-SY5Y cells leads to a significant increase (1.7-fold) in phosphorylated tau at Y18 (Fig. 14c, p < 0.01) and at S396/404 (Fig. 14d, 3-fold, p < 0.0001) compared to control cells. Total tau levels are also significantly increased following Syk overexpression (Fig. 14e, 4.2-fold, p < 0.0001). PubMed:28877763

Appears in Networks:

p(MGI:Mapt, pmod(Ph, Ser, 202)) positiveCorrelation p(MGI:Syk) View Subject | View Object

We further validated Syk as a target-regulating Aβ by showing that pharmacological inhibition of Syk or down-regulation of Syk expression reduces Aβ production and increases the clearance of Aβ across the BBB mimicking (-)-nilvadipine effects. Moreover, treatment of transgenic mice overexpressing Aβ and transgenic Tau P301S mice with a selective Syk inhibitor respectively decreased brain Aβ accumulation and Tau hyperphosphorylation at multiple AD relevant epitopes. PubMed:25331948

Appears in Networks:

p(MGI:Mapt, pmod(Ph, Ser, 301)) positiveCorrelation p(MGI:Syk) View Subject | View Object

Additionally, we show that Syk overexpression leads to increased tau accumulation and promotes tau hyperphosphorylation at multiple epitopes in human neuron-like SH-SY5Y cells, further supporting a role of Syk in the formation of tau pathogenic species. Collectively, our data show that Syk activation occurs following Aβ deposition and the formation of tau pathological species. PubMed:28877763

Appears in Networks:

p(MGI:Mapt, pmod(Ph, Ser, 396)) positiveCorrelation p(MGI:Syk) View Subject | View Object

Interestingly, Syk upregulation in SH-SY5Y cells leads to a significant increase (1.7-fold) in phosphorylated tau at Y18 (Fig. 14c, p < 0.01) and at S396/404 (Fig. 14d, 3-fold, p < 0.0001) compared to control cells. Total tau levels are also significantly increased following Syk overexpression (Fig. 14e, 4.2-fold, p < 0.0001). PubMed:28877763

Appears in Networks:

p(MGI:Mapt, pmod(Ph, Ser, 396)) positiveCorrelation p(MGI:Syk) View Subject | View Object

We further validated Syk as a target-regulating Aβ by showing that pharmacological inhibition of Syk or down-regulation of Syk expression reduces Aβ production and increases the clearance of Aβ across the BBB mimicking (-)-nilvadipine effects. Moreover, treatment of transgenic mice overexpressing Aβ and transgenic Tau P301S mice with a selective Syk inhibitor respectively decreased brain Aβ accumulation and Tau hyperphosphorylation at multiple AD relevant epitopes. PubMed:25331948

Appears in Networks:

p(MGI:Mapt, pmod(Ph, Ser, 404)) positiveCorrelation p(MGI:Syk) View Subject | View Object

Interestingly, Syk upregulation in SH-SY5Y cells leads to a significant increase (1.7-fold) in phosphorylated tau at Y18 (Fig. 14c, p < 0.01) and at S396/404 (Fig. 14d, 3-fold, p < 0.0001) compared to control cells. Total tau levels are also significantly increased following Syk overexpression (Fig. 14e, 4.2-fold, p < 0.0001). PubMed:28877763

Appears in Networks:

p(MGI:Mapt, pmod(Ph, Ser, 404)) positiveCorrelation p(MGI:Syk) View Subject | View Object

We further validated Syk as a target-regulating Aβ by showing that pharmacological inhibition of Syk or down-regulation of Syk expression reduces Aβ production and increases the clearance of Aβ across the BBB mimicking (-)-nilvadipine effects. Moreover, treatment of transgenic mice overexpressing Aβ and transgenic Tau P301S mice with a selective Syk inhibitor respectively decreased brain Aβ accumulation and Tau hyperphosphorylation at multiple AD relevant epitopes. PubMed:25331948

Appears in Networks:

p(MGI:Mapt, pmod(Ph, Tyr, 18)) positiveCorrelation p(MGI:Syk) View Subject | View Object

Interestingly, Syk upregulation in SH-SY5Y cells leads to a significant increase (1.7-fold) in phosphorylated tau at Y18 (Fig. 14c, p < 0.01) and at S396/404 (Fig. 14d, 3-fold, p < 0.0001) compared to control cells. Total tau levels are also significantly increased following Syk overexpression (Fig. 14e, 4.2-fold, p < 0.0001). PubMed:28877763

Appears in Networks:

p(MGI:Mapt, pmod(Ph, Tyr, 18)) positiveCorrelation p(MGI:Syk) View Subject | View Object

We further validated Syk as a target-regulating Aβ by showing that pharmacological inhibition of Syk or down-regulation of Syk expression reduces Aβ production and increases the clearance of Aβ across the BBB mimicking (-)-nilvadipine effects. Moreover, treatment of transgenic mice overexpressing Aβ and transgenic Tau P301S mice with a selective Syk inhibitor respectively decreased brain Aβ accumulation and Tau hyperphosphorylation at multiple AD relevant epitopes. PubMed:25331948

Appears in Networks:

Out-Edges 11

p(MGI:Syk) positiveCorrelation p(MGI:Mapt, pmod(Ph, Ser, 301)) View Subject | View Object

Additionally, we show that Syk overexpression leads to increased tau accumulation and promotes tau hyperphosphorylation at multiple epitopes in human neuron-like SH-SY5Y cells, further supporting a role of Syk in the formation of tau pathogenic species. Collectively, our data show that Syk activation occurs following Aβ deposition and the formation of tau pathological species. PubMed:28877763

Appears in Networks:

p(MGI:Syk) positiveCorrelation p(MGI:Mapt, pmod(Ph, Tyr, 18)) View Subject | View Object

Interestingly, Syk upregulation in SH-SY5Y cells leads to a significant increase (1.7-fold) in phosphorylated tau at Y18 (Fig. 14c, p < 0.01) and at S396/404 (Fig. 14d, 3-fold, p < 0.0001) compared to control cells. Total tau levels are also significantly increased following Syk overexpression (Fig. 14e, 4.2-fold, p < 0.0001). PubMed:28877763

Appears in Networks:

p(MGI:Syk) positiveCorrelation p(MGI:Mapt, pmod(Ph, Tyr, 18)) View Subject | View Object

We further validated Syk as a target-regulating Aβ by showing that pharmacological inhibition of Syk or down-regulation of Syk expression reduces Aβ production and increases the clearance of Aβ across the BBB mimicking (-)-nilvadipine effects. Moreover, treatment of transgenic mice overexpressing Aβ and transgenic Tau P301S mice with a selective Syk inhibitor respectively decreased brain Aβ accumulation and Tau hyperphosphorylation at multiple AD relevant epitopes. PubMed:25331948

Appears in Networks:

p(MGI:Syk) positiveCorrelation p(MGI:Mapt, pmod(Ph, Ser, 396)) View Subject | View Object

Interestingly, Syk upregulation in SH-SY5Y cells leads to a significant increase (1.7-fold) in phosphorylated tau at Y18 (Fig. 14c, p < 0.01) and at S396/404 (Fig. 14d, 3-fold, p < 0.0001) compared to control cells. Total tau levels are also significantly increased following Syk overexpression (Fig. 14e, 4.2-fold, p < 0.0001). PubMed:28877763

Appears in Networks:

p(MGI:Syk) positiveCorrelation p(MGI:Mapt, pmod(Ph, Ser, 396)) View Subject | View Object

We further validated Syk as a target-regulating Aβ by showing that pharmacological inhibition of Syk or down-regulation of Syk expression reduces Aβ production and increases the clearance of Aβ across the BBB mimicking (-)-nilvadipine effects. Moreover, treatment of transgenic mice overexpressing Aβ and transgenic Tau P301S mice with a selective Syk inhibitor respectively decreased brain Aβ accumulation and Tau hyperphosphorylation at multiple AD relevant epitopes. PubMed:25331948

Appears in Networks:

p(MGI:Syk) positiveCorrelation p(MGI:Mapt, pmod(Ph, Ser, 404)) View Subject | View Object

Interestingly, Syk upregulation in SH-SY5Y cells leads to a significant increase (1.7-fold) in phosphorylated tau at Y18 (Fig. 14c, p < 0.01) and at S396/404 (Fig. 14d, 3-fold, p < 0.0001) compared to control cells. Total tau levels are also significantly increased following Syk overexpression (Fig. 14e, 4.2-fold, p < 0.0001). PubMed:28877763

Appears in Networks:

p(MGI:Syk) positiveCorrelation p(MGI:Mapt, pmod(Ph, Ser, 404)) View Subject | View Object

We further validated Syk as a target-regulating Aβ by showing that pharmacological inhibition of Syk or down-regulation of Syk expression reduces Aβ production and increases the clearance of Aβ across the BBB mimicking (-)-nilvadipine effects. Moreover, treatment of transgenic mice overexpressing Aβ and transgenic Tau P301S mice with a selective Syk inhibitor respectively decreased brain Aβ accumulation and Tau hyperphosphorylation at multiple AD relevant epitopes. PubMed:25331948

Appears in Networks:

p(MGI:Syk) positiveCorrelation p(MGI:Mapt) View Subject | View Object

Interestingly, Syk upregulation in SH-SY5Y cells leads to a significant increase (1.7-fold) in phosphorylated tau at Y18 (Fig. 14c, p < 0.01) and at S396/404 (Fig. 14d, 3-fold, p < 0.0001) compared to control cells. Total tau levels are also significantly increased following Syk overexpression (Fig. 14e, 4.2-fold, p < 0.0001). PubMed:28877763

Appears in Networks:

p(MGI:Syk) positiveCorrelation a(CHEBI:"amyloid-beta") View Subject | View Object

We further validated Syk as a target-regulating Aβ by showing that pharmacological inhibition of Syk or down-regulation of Syk expression reduces Aβ production and increases the clearance of Aβ across the BBB mimicking (-)-nilvadipine effects. Moreover, treatment of transgenic mice overexpressing Aβ and transgenic Tau P301S mice with a selective Syk inhibitor respectively decreased brain Aβ accumulation and Tau hyperphosphorylation at multiple AD relevant epitopes. PubMed:25331948

Appears in Networks:

p(MGI:Syk) positiveCorrelation p(MGI:Mapt, pmod(Ph, Ser, 202)) View Subject | View Object

We further validated Syk as a target-regulating Aβ by showing that pharmacological inhibition of Syk or down-regulation of Syk expression reduces Aβ production and increases the clearance of Aβ across the BBB mimicking (-)-nilvadipine effects. Moreover, treatment of transgenic mice overexpressing Aβ and transgenic Tau P301S mice with a selective Syk inhibitor respectively decreased brain Aβ accumulation and Tau hyperphosphorylation at multiple AD relevant epitopes. PubMed:25331948

Appears in Networks:

About

BEL Commons is developed and maintained in an academic capacity by Charles Tapley Hoyt and Daniel Domingo-Fernández at the Fraunhofer SCAI Department of Bioinformatics with support from the IMI project, AETIONOMY. It is built on top of PyBEL, an open source project. Please feel free to contact us here to give us feedback or report any issues. Also, see our Publishing Notes and Data Protection information.

If you find BEL Commons useful in your work, please consider citing: Hoyt, C. T., Domingo-Fernández, D., & Hofmann-Apitius, M. (2018). BEL Commons: an environment for exploration and analysis of networks encoded in Biological Expression Language. Database, 2018(3), 1–11.