bp(GO:"'de novo' protein folding")
HSP70s function in a variety of basic cellular quality control and maintenance processes, such as proper folding of newly synthesized proteins, along with preventing protein misfolding and aggregation through the binding of exposed hydrophobic residues. PubMed:27491084
Chaperones that function broadly in de novo folding and refolding (i.e., the chaperonins, Hsp70s, and Hsp90s) are ATP regulated and recognize segments of exposed hydropho- bic amino acid residues, which are later buried in the interior of the natively folded protein. PubMed:23746257
TRiC binds to nascent chains and cooperates with Hsp70 in the cotranslational folding of multidomain proteins (78). Investigators have demonstrated a direct interaction between Hsp70 and TRiC (79). PubMed:23746257
Chaperones that function broadly in de novo folding and refolding (i.e., the chaperonins, Hsp70s, and Hsp90s) are ATP regulated and recognize segments of exposed hydropho- bic amino acid residues, which are later buried in the interior of the natively folded protein. PubMed:23746257
Hsp70 chaperones are a ubiquitous class of proteins. They are involved in a wide range of protein quality control functions, including de novo protein folding, refolding of stress- denatured proteins, protein transport, mem- brane translocation, and protein degradation. PubMed:23746257
Chaperones that function broadly in de novo folding and refolding (i.e., the chaperonins, Hsp70s, and Hsp90s) are ATP regulated and recognize segments of exposed hydropho- bic amino acid residues, which are later buried in the interior of the natively folded protein. PubMed:23746257
HSP70 chaperones have a diverse array of cellular functions but their major role is to ensure correct folding of newly synthesized proteins and to perform the refolding of proteins that are misfolded and/or aggregated. PubMed:24563850
Chaperones that function broadly in de novo folding and refolding (i.e., the chaperonins, Hsp70s, and Hsp90s) are ATP regulated and recognize segments of exposed hydropho- bic amino acid residues, which are later buried in the interior of the natively folded protein. PubMed:23746257
Chaperones that function broadly in de novo folding and refolding (i.e., the chaperonins, Hsp70s, and Hsp90s) are ATP regulated and recognize segments of exposed hydropho- bic amino acid residues, which are later buried in the interior of the natively folded protein. PubMed:23746257
Hsp70 chaperones are a ubiquitous class of proteins. They are involved in a wide range of protein quality control functions, including de novo protein folding, refolding of stress- denatured proteins, protein transport, mem- brane translocation, and protein degradation. PubMed:23746257
Chaperones that function broadly in de novo folding and refolding (i.e., the chaperonins, Hsp70s, and Hsp90s) are ATP regulated and recognize segments of exposed hydropho- bic amino acid residues, which are later buried in the interior of the natively folded protein. PubMed:23746257
BEL Commons is developed and maintained in an academic capacity by Charles Tapley Hoyt and Daniel Domingo-Fernández at the Fraunhofer SCAI Department of Bioinformatics with support from the IMI project, AETIONOMY. It is built on top of PyBEL, an open source project. Please feel free to contact us here to give us feedback or report any issues. Also, see our Publishing Notes and Data Protection information.
If you find BEL Commons useful in your work, please consider citing: Hoyt, C. T., Domingo-Fernández, D., & Hofmann-Apitius, M. (2018). BEL Commons: an environment for exploration and analysis of networks encoded in Biological Expression Language. Database, 2018(3), 1–11.