a(CHEBI:"dihydro-beta-erythroidine")
Nicotine protection of cultured rat cortical neu- rons against Abeta toxicity is blocked by the alpha4beta2 antagonist, dihydro-beta-erythroidine (Kihara et al., 1998). PubMed:19293145
The discovery that nicotine, a ligand acting at nAChRs, and its mimetics can protect neurons against Abeta toxicity (Kihara et al., 1998) is of interest, especially in view of the observation that nicotine also enhances cognition (Rusted et al., 2000). Nicotinic receptors play a particularly prominent role in nicotine protection. The protective effect is blocked by the nicotinic antagonists dihydro-beta-erythroidine and mecamylamine (Kihara et al., 2001; Takada- Takatori et al., 2006). PubMed:19293145
Nicotine protection of cultured rat cortical neu- rons against Abeta toxicity is blocked by the alpha4beta2 antagonist, dihydro-beta-erythroidine (Kihara et al., 1998). PubMed:19293145
Nicotine protection of cultured rat cortical neu- rons against Abeta toxicity is blocked by the alpha4beta2 antagonist, dihydro-beta-erythroidine (Kihara et al., 1998). PubMed:19293145
For example, local infusion of the α7 antagonist, methyllycaconitine (MLA), or the β2∗ antagonist, dihydro-β-erythroidine (DHβE), into the basolateral amygdala, the ventral hippocampus, or the dorsal hippocampus impairs the working memory of rats seeking food reward within a 16-arm radial maze (146–148). PubMed:17009926
For example, local infusion of the α7 antagonist, methyllycaconitine (MLA), or the β2∗ antagonist, dihydro-β-erythroidine (DHβE), into the basolateral amygdala, the ventral hippocampus, or the dorsal hippocampus impairs the working memory of rats seeking food reward within a 16-arm radial maze (146–148). PubMed:17009926
BEL Commons is developed and maintained in an academic capacity by Charles Tapley Hoyt and Daniel Domingo-Fernández at the Fraunhofer SCAI Department of Bioinformatics with support from the IMI project, AETIONOMY. It is built on top of PyBEL, an open source project. Please feel free to contact us here to give us feedback or report any issues. Also, see our Publishing Notes and Data Protection information.
If you find BEL Commons useful in your work, please consider citing: Hoyt, C. T., Domingo-Fernández, D., & Hofmann-Apitius, M. (2018). BEL Commons: an environment for exploration and analysis of networks encoded in Biological Expression Language. Database, 2018(3), 1–11.