Equivalencies: 0 | Classes: 0 | Children: 0 | Explore

Appears in Networks 1

Tau Modifications v1.9.5

Tau Modifications Sections of NESTOR

In-Edges 1

act(p(INTERPRO:"Triosephosphate isomerase")) negativeCorrelation a(CHEBI:methylglyoxal) View Subject | View Object

In accordance with the decreased efficiency of nitro-TPI we found a significant increase in methylglyoxal production (P50.05), independent of whether DHAP or GAP was used as substrate (Fig. 2E). Thus, nitrotyrosination of TPI results in reduced catalytic activity and increased occupancy of the enzyme by the substrate, and consequently, a higher production of the toxic methylglyoxal. PubMed:19251756

Appears in Networks:

Out-Edges 11

a(CHEBI:methylglyoxal) increases p(MGI:Mapt, pmod(Ph, Ser, 199)) View Subject | View Object

Here, we found that MG could induce tau hyperphosphorylation at multiple AD-related sites in neuroblastoma 2a cells under maintaining normal cell viability. MG treatment increased the level of advanced glycation end products (AGEs) and the receptor of AGEs (RAGE). PubMed:22798221

Appears in Networks:

a(CHEBI:methylglyoxal) increases p(MGI:Mapt, pmod(Ph, Ser, 404)) View Subject | View Object

Here, we found that MG could induce tau hyperphosphorylation at multiple AD-related sites in neuroblastoma 2a cells under maintaining normal cell viability. MG treatment increased the level of advanced glycation end products (AGEs) and the receptor of AGEs (RAGE). PubMed:22798221

Appears in Networks:

a(CHEBI:methylglyoxal) increases p(MGI:Mapt, pmod(Ph, Ser, 198)) View Subject | View Object

Here, we found that MG could induce tau hyperphosphorylation at multiple AD-related sites in neuroblastoma 2a cells under maintaining normal cell viability. MG treatment increased the level of advanced glycation end products (AGEs) and the receptor of AGEs (RAGE). PubMed:22798221

Appears in Networks:

a(CHEBI:methylglyoxal) increases p(MGI:Mapt, pmod(Ph, Ser, 202)) View Subject | View Object

Here, we found that MG could induce tau hyperphosphorylation at multiple AD-related sites in neuroblastoma 2a cells under maintaining normal cell viability. MG treatment increased the level of advanced glycation end products (AGEs) and the receptor of AGEs (RAGE). PubMed:22798221

Appears in Networks:

a(CHEBI:methylglyoxal) increases p(MGI:Mapt, pmod(Ph, Thr, 231)) View Subject | View Object

Here, we found that MG could induce tau hyperphosphorylation at multiple AD-related sites in neuroblastoma 2a cells under maintaining normal cell viability. MG treatment increased the level of advanced glycation end products (AGEs) and the receptor of AGEs (RAGE). PubMed:22798221

Appears in Networks:

a(CHEBI:methylglyoxal) increases p(MGI:Mapt, pmod(Ph, Ser, 396)) View Subject | View Object

Here, we found that MG could induce tau hyperphosphorylation at multiple AD-related sites in neuroblastoma 2a cells under maintaining normal cell viability. MG treatment increased the level of advanced glycation end products (AGEs) and the receptor of AGEs (RAGE). PubMed:22798221

Appears in Networks:

a(CHEBI:methylglyoxal) increases p(MGI:Mapt, pmod(Ph, Thr, 205)) View Subject | View Object

Here, we found that MG could induce tau hyperphosphorylation at multiple AD-related sites in neuroblastoma 2a cells under maintaining normal cell viability. MG treatment increased the level of advanced glycation end products (AGEs) and the receptor of AGEs (RAGE). PubMed:22798221

Appears in Networks:

a(CHEBI:methylglyoxal) increases a(CHEBI:"advanced glycation end-product") View Subject | View Object

Here, we found that MG could induce tau hyperphosphorylation at multiple AD-related sites in neuroblastoma 2a cells under maintaining normal cell viability. MG treatment increased the level of advanced glycation end products (AGEs) and the receptor of AGEs (RAGE). PubMed:22798221

Appears in Networks:

a(CHEBI:methylglyoxal) increases p(HGNC:AGER) View Subject | View Object

Here, we found that MG could induce tau hyperphosphorylation at multiple AD-related sites in neuroblastoma 2a cells under maintaining normal cell viability. MG treatment increased the level of advanced glycation end products (AGEs) and the receptor of AGEs (RAGE). PubMed:22798221

Appears in Networks:

a(CHEBI:methylglyoxal) negativeCorrelation act(p(INTERPRO:"Triosephosphate isomerase")) View Subject | View Object

In accordance with the decreased efficiency of nitro-TPI we found a significant increase in methylglyoxal production (P50.05), independent of whether DHAP or GAP was used as substrate (Fig. 2E). Thus, nitrotyrosination of TPI results in reduced catalytic activity and increased occupancy of the enzyme by the substrate, and consequently, a higher production of the toxic methylglyoxal. PubMed:19251756

Appears in Networks:

a(CHEBI:methylglyoxal) increases a(GO:"neurofibrillary tangle") View Subject | View Object

Acrolein and methylglyoxal were the most reactive compounds followed by glyoxal and malondialdehyde in terms of formation of Tau dimers and higher molecular weight oligomers. Analysis of the Tau aggregates by electron microscopy study showed that formation of fibrils using wild-type Tau and several Tau mutants could be observed with acrolein and methylglyoxal but not with glyoxal and malondialdehyde. PubMed:17082178

Appears in Networks:

About

BEL Commons is developed and maintained in an academic capacity by Charles Tapley Hoyt and Daniel Domingo-Fernández at the Fraunhofer SCAI Department of Bioinformatics with support from the IMI project, AETIONOMY. It is built on top of PyBEL, an open source project. Please feel free to contact us here to give us feedback or report any issues. Also, see our Publishing Notes and Data Protection information.

If you find BEL Commons useful in your work, please consider citing: Hoyt, C. T., Domingo-Fernández, D., & Hofmann-Apitius, M. (2018). BEL Commons: an environment for exploration and analysis of networks encoded in Biological Expression Language. Database, 2018(3), 1–11.