bp(GO:"excitatory postsynaptic potential")
In brain slice electrophysiology studies, BQCA enhanced excitatory postsynaptic currents in medial prefrontal cortical neurons,69 an area critical for higher cognitive, learning, and memory functions.70 In pre-clinical animal studies, BQCA reversed scopolamine-impaired contextual fear conditioning and rescued medial prefrontal cortex-dependent discrimination reversal learning deficits in a transgenic mouse model of AD. PubMed:24511233
For example, it has been shown that the benzyl quinolone carboxylic acid (BQCA), which is an M1-selective allosteric agonist, is effective in increasing spontaneous excitatory postsynaptic currents in the medial prefrontal cortex (mPFC) pyramidal cells and improving memory in a transgenic mouse model of AD PubMed:26813123
Compared with untreated proaggregant Tau transgenic mice, treated mice (proaggregant Tau transgenics and littermate controls) have significantly larger maximal excitatory postsynaptic potential amplitudes (Fig. 5 G–I) PubMed:27671637
BEL Commons is developed and maintained in an academic capacity by Charles Tapley Hoyt and Daniel Domingo-Fernández at the Fraunhofer SCAI Department of Bioinformatics with support from the IMI project, AETIONOMY. It is built on top of PyBEL, an open source project. Please feel free to contact us here to give us feedback or report any issues. Also, see our Publishing Notes and Data Protection information.
If you find BEL Commons useful in your work, please consider citing: Hoyt, C. T., Domingo-Fernández, D., & Hofmann-Apitius, M. (2018). BEL Commons: an environment for exploration and analysis of networks encoded in Biological Expression Language. Database, 2018(3), 1–11.