complex(p(HGNC:CHRM1), p(INTERPRO:"G-protein alpha subunit, group Q"))
It has been demonstrated that M1 muscarinic receptors coupling to G-proteins is impaired in the neocortex of AD patients and that the extent of M1/G-protein uncoupling is related to the severity of cognitive symptoms in AD PubMed:26813123
Stimulation of Gαq coupled muscarinic receptors leads to activation of phospholipase C and formation of inositol phosphates and other second messengers, which can promote closure of K+ channels, thus facilitating cell excitability PubMed:26813123
Stimulation of Gαq coupled muscarinic receptors leads to activation of phospholipase C and formation of inositol phosphates and other second messengers, which can promote closure of K+ channels, thus facilitating cell excitability PubMed:26813123
Stimulation of Gαq coupled muscarinic receptors leads to activation of phospholipase C and formation of inositol phosphates and other second messengers, which can promote closure of K+ channels, thus facilitating cell excitability PubMed:26813123
On the other hand, stimulation of Gαq coupled muscarinic receptors generates intracellular second messengers that can facilitate N-methyl-D-aspartate (NMDA) currents PubMed:26813123
It has been demonstrated that M1 muscarinic receptors coupling to G-proteins is impaired in the neocortex of AD patients and that the extent of M1/G-protein uncoupling is related to the severity of cognitive symptoms in AD PubMed:26813123
It has been demonstrated that M1 muscarinic receptors coupling to G-proteins is impaired in the neocortex of AD patients and that the extent of M1/G-protein uncoupling is related to the severity of cognitive symptoms in AD PubMed:26813123
BEL Commons is developed and maintained in an academic capacity by Charles Tapley Hoyt and Daniel Domingo-Fernández at the Fraunhofer SCAI Department of Bioinformatics with support from the IMI project, AETIONOMY. It is built on top of PyBEL, an open source project. Please feel free to contact us here to give us feedback or report any issues. Also, see our Publishing Notes and Data Protection information.
If you find BEL Commons useful in your work, please consider citing: Hoyt, C. T., Domingo-Fernández, D., & Hofmann-Apitius, M. (2018). BEL Commons: an environment for exploration and analysis of networks encoded in Biological Expression Language. Database, 2018(3), 1–11.