Name
Parahippocampal Gyrus
Namespace Keyword
MeSHAnatomy
Namespace
MeSH
Namespace Version
20170511
Namespace URL
https://arty.scai.fraunhofer.de/artifactory/bel/annotation/mesh-anatomy/mesh-anatomy-20170511.belanno

Sample Annotated Edges 4

act(complex(GO:"proteasome complex")) negativeCorrelation a(GO:"neurofibrillary tangle") View Subject | View Object

That is, in areas where NFTs formed abundantly, including hippocampus and parahippocampal gyrus and superior and middle temporal gyri, proteasome activity (as assessed by chymortrypsinlike and postglutamyl peptidases) appeared to be most affected, whereas occipital gyri and cerebellum, which often have few or no NFTs, were least affected (Keller et al. 2000). PubMed:22908190

bp(GO:aging) negativeCorrelation act(complex(GO:"proteasome complex")) View Subject | View Object

Beyond an age-related reduction (Keller et al. 2002), proteasome activities decrease in AD in a brain region–specific manner, particularly in hippocampus, parahippocampal gyrus, superior and middle temporal gyri, and the inferior parietal lobule (Keller et al. 2000), areas that are especially critical for long-term memory formation. PubMed:22908190

a(GO:"neurofibrillary tangle") negativeCorrelation act(complex(GO:"proteasome complex")) View Subject | View Object

That is, in areas where NFTs formed abundantly, including hippocampus and parahippocampal gyrus and superior and middle temporal gyri, proteasome activity (as assessed by chymortrypsinlike and postglutamyl peptidases) appeared to be most affected, whereas occipital gyri and cerebellum, which often have few or no NFTs, were least affected (Keller et al. 2000). PubMed:22908190

act(complex(GO:"proteasome complex")) negativeCorrelation bp(GO:aging) View Subject | View Object

Beyond an age-related reduction (Keller et al. 2002), proteasome activities decrease in AD in a brain region–specific manner, particularly in hippocampus, parahippocampal gyrus, superior and middle temporal gyri, and the inferior parietal lobule (Keller et al. 2000), areas that are especially critical for long-term memory formation. PubMed:22908190

About

BEL Commons is developed and maintained in an academic capacity by Charles Tapley Hoyt and Daniel Domingo-Fernández at the Fraunhofer SCAI Department of Bioinformatics with support from the IMI project, AETIONOMY. It is built on top of PyBEL, an open source project. Please feel free to contact us here to give us feedback or report any issues. Also, see our Publishing Notes and Data Protection information.

If you find BEL Commons useful in your work, please consider citing: Hoyt, C. T., Domingo-Fernández, D., & Hofmann-Apitius, M. (2018). BEL Commons: an environment for exploration and analysis of networks encoded in Biological Expression Language. Database, 2018(3), 1–11.