bp(HBP:Astrogliosis)
Overall, anatabine did not significantly impact EAE induced astrogliosis for the different areas of the brain examined (Fig. 7) PubMed:23383175
A marked increase in GFAP immunostaining was also observed in the spinal cord of EAE mice and was significantly suppressed by the anatabine treatment showing that anatabine prevents astrogliosis in the spinal cord of EAE mice (Fig. 11) PubMed:23383175
A statistically significant positive correlation was observed between the amount of GFAP and Iba1 burden in the spinal cord (Pearson correlation = 0.612, P,0.002) whereas negative correlations were observed between the GFAP burden and the Luxol fast blue burden (Pearson correlation =20.525, P= 0.007), and between the IBa1 burden and the Luxol fast blue burden (Pearson correlation =20.609, P =0.001) suggesting that astrogliosis and microgliosis are associated with the loss of myelin in the spinal cord PubMed:23383175
A significant increase in astrogliosis revealed by a GFAP immunostaining was observed in the cortex and medulla of EAE mice compared to control non immunized animals (Fig. 7) PubMed:23383175
A marked increase in GFAP immunostaining was also observed in the spinal cord of EAE mice and was significantly suppressed by the anatabine treatment showing that anatabine prevents astrogliosis in the spinal cord of EAE mice (Fig. 11) PubMed:23383175
A statistically significant positive correlation was observed between the amount of GFAP and Iba1 burden in the spinal cord (Pearson correlation = 0.612, P,0.002) whereas negative correlations were observed between the GFAP burden and the Luxol fast blue burden (Pearson correlation =20.525, P= 0.007), and between the IBa1 burden and the Luxol fast blue burden (Pearson correlation =20.609, P =0.001) suggesting that astrogliosis and microgliosis are associated with the loss of myelin in the spinal cord PubMed:23383175
BEL Commons is developed and maintained in an academic capacity by Charles Tapley Hoyt and Daniel Domingo-Fernández at the Fraunhofer SCAI Department of Bioinformatics with support from the IMI project, AETIONOMY. It is built on top of PyBEL, an open source project. Please feel free to contact us here to give us feedback or report any issues. Also, see our Publishing Notes and Data Protection information.
If you find BEL Commons useful in your work, please consider citing: Hoyt, C. T., Domingo-Fernández, D., & Hofmann-Apitius, M. (2018). BEL Commons: an environment for exploration and analysis of networks encoded in Biological Expression Language. Database, 2018(3), 1–11.