bp(GO:"response to endoplasmic reticulum stress")
The UPR is a mechanism that involves a stress response in the ER, including increased biosynthesis of ER chaperones, in response to accumulation of misfolded/denatured/mutated proteins in this organelle (for a recent review on UPR, see Kaufman, 2002). PubMed:14556719
Ambroxol, which also decreased ER stress in D. mela- nogaster 201 , reduced α-synuclein levels in overexpress- ing, transgenic mice 202 . PubMed:30116051
Cells expressing WT tau behave as control cells and display a dose-dependent increase in CMA activity upon exposure to paraquat (Fig. 3f) or thapsigargin (Fig. 3g) PubMed:29024336
The authors proposed that another, not yet characterized, ER stress pathway activates the NLRP3 inflammasome90. PubMed:23702978
Upon ER proteotoxic stress, GRP78 dissociates from its binding partners, which are then free to trigger the Unfolded Protein Response (UPR) by regulating specific gene responses aiming to restore ER proteome stability. PubMed:24563850
The three sensors of ER proteotoxic stress facilitate contra- dictory responses since they either promote cell survival by decreasing the misfolded protein and/or oxidative load, or, if UPR fails, they promote the activation of apoptotic pathways that eventually result in cell death [57]. PubMed:24563850
The three sensors of ER proteotoxic stress facilitate contra- dictory responses since they either promote cell survival by decreasing the misfolded protein and/or oxidative load, or, if UPR fails, they promote the activation of apoptotic pathways that eventually result in cell death [57]. PubMed:24563850
The three sensors of ER proteotoxic stress facilitate contra- dictory responses since they either promote cell survival by decreasing the misfolded protein and/or oxidative load, or, if UPR fails, they promote the activation of apoptotic pathways that eventually result in cell death [57]. PubMed:24563850
The three sensors of ER proteotoxic stress facilitate contra- dictory responses since they either promote cell survival by decreasing the misfolded protein and/or oxidative load, or, if UPR fails, they promote the activation of apoptotic pathways that eventually result in cell death [57]. PubMed:24563850
BEL Commons is developed and maintained in an academic capacity by Charles Tapley Hoyt and Daniel Domingo-Fernández at the Fraunhofer SCAI Department of Bioinformatics with support from the IMI project, AETIONOMY. It is built on top of PyBEL, an open source project. Please feel free to contact us here to give us feedback or report any issues. Also, see our Publishing Notes and Data Protection information.
If you find BEL Commons useful in your work, please consider citing: Hoyt, C. T., Domingo-Fernández, D., & Hofmann-Apitius, M. (2018). BEL Commons: an environment for exploration and analysis of networks encoded in Biological Expression Language. Database, 2018(3), 1–11.