Equivalencies: 0 | Classes: 0 | Children: 0 | Explore

Entity

Name
neuronal signal transduction
Namespace
go
Namespace Version
20180921
Namespace URL
https://raw.githubusercontent.com/pharmacome/terminology/b46b65c3da259b6e86026514dfececab7c22a11b/external/go-names.belns

Appears in Networks 3

In-Edges 3

act(a(MESH:"Lymphatic Vessels")) association bp(GO:"neuronal signal transduction") View Subject | View Object

Significant transcriptional alterations were also associated with excitatory synaptic remodelling and plasticity, hippocampal neuronal transmission, learning and memory and ageing-related cognitive decline (Extended Data Fig. 5q, r) PubMed:30046111

a(HBP:HBP00074) decreases bp(GO:"neuronal signal transduction") View Subject | View Object

It was also shown that soluble AβOs may directly trigger dysfunction of neural signaling, which leads to early memory loss and the progression of dementia in AD. PubMed:29196815

p(HGNC:CHRM1) association bp(GO:"neuronal signal transduction") View Subject | View Object

Among the mAChR family members, the M1 subtype makes up 50–60% of the total and is predominantly expressed in all major areas of the forebrain, including the hippocampus, cerebral cortex, corpus striatum, and thalamus[36-38]. M1 mAChR-knockout mice show a series of cognitive defi cits and impairments in long-term potentiation, indicating that the M1 subtype is physiologically linked to multiple functions such as synaptic plasticity, neuronal excitability, neuronal differentiation during early development, and learning and memory PubMed:24590577

Out-Edges 2

bp(GO:"neuronal signal transduction") association act(a(MESH:"Lymphatic Vessels")) View Subject | View Object

Significant transcriptional alterations were also associated with excitatory synaptic remodelling and plasticity, hippocampal neuronal transmission, learning and memory and ageing-related cognitive decline (Extended Data Fig. 5q, r) PubMed:30046111

bp(GO:"neuronal signal transduction") association p(HGNC:CHRM1) View Subject | View Object

Among the mAChR family members, the M1 subtype makes up 50–60% of the total and is predominantly expressed in all major areas of the forebrain, including the hippocampus, cerebral cortex, corpus striatum, and thalamus[36-38]. M1 mAChR-knockout mice show a series of cognitive defi cits and impairments in long-term potentiation, indicating that the M1 subtype is physiologically linked to multiple functions such as synaptic plasticity, neuronal excitability, neuronal differentiation during early development, and learning and memory PubMed:24590577

About

BEL Commons is developed and maintained in an academic capacity by Charles Tapley Hoyt and Daniel Domingo-Fernández at the Fraunhofer SCAI Department of Bioinformatics with support from the IMI project, AETIONOMY. It is built on top of PyBEL, an open source project. Please feel free to contact us here to give us feedback or report any issues. Also, see our Publishing Notes and Data Protection information.

If you find BEL Commons useful in your work, please consider citing: Hoyt, C. T., Domingo-Fernández, D., & Hofmann-Apitius, M. (2018). BEL Commons: an environment for exploration and analysis of networks encoded in Biological Expression Language. Database, 2018(3), 1–11.