bp(GO:"TRIF-dependent toll-like receptor 4 signaling pathway")
One checkpoint is that bacterial mRNA from live bacteria (also known as vita-PAMPs)44 activates NLRP3; the other checkpoint is that TLR4- and TRIF (TIR domain-containing adaptor protein inducing IFNβ)-dependent signalling — which is triggered by bacterial lipopolysaccharide (LPS) — mediate the secretion of type I IFNs, inducing pro-caspase 11 expression and activation by triggering the IFNα/β receptor (IFNAR) (FIG. 1). PubMed:23702978
In the presence of the translation inhibitor cycloheximide, TRIF signalling that is downstream of TLR3 or TLR4 leads to pro-IL-1β processing by caspase 8 (REF. 55). PubMed:23702978
One checkpoint is that bacterial mRNA from live bacteria (also known as vita-PAMPs)44 activates NLRP3; the other checkpoint is that TLR4- and TRIF (TIR domain-containing adaptor protein inducing IFNβ)-dependent signalling — which is triggered by bacterial lipopolysaccharide (LPS) — mediate the secretion of type I IFNs, inducing pro-caspase 11 expression and activation by triggering the IFNα/β receptor (IFNAR) (FIG. 1). PubMed:23702978
One checkpoint is that bacterial mRNA from live bacteria (also known as vita-PAMPs)44 activates NLRP3; the other checkpoint is that TLR4- and TRIF (TIR domain-containing adaptor protein inducing IFNβ)-dependent signalling — which is triggered by bacterial lipopolysaccharide (LPS) — mediate the secretion of type I IFNs, inducing pro-caspase 11 expression and activation by triggering the IFNα/β receptor (IFNAR) (FIG. 1). PubMed:23702978
One checkpoint is that bacterial mRNA from live bacteria (also known as vita-PAMPs)44 activates NLRP3; the other checkpoint is that TLR4- and TRIF (TIR domain-containing adaptor protein inducing IFNβ)-dependent signalling — which is triggered by bacterial lipopolysaccharide (LPS) — mediate the secretion of type I IFNs, inducing pro-caspase 11 expression and activation by triggering the IFNα/β receptor (IFNAR) (FIG. 1). PubMed:23702978
In the presence of the translation inhibitor cycloheximide, TRIF signalling that is downstream of TLR3 or TLR4 leads to pro-IL-1β processing by caspase 8 (REF. 55). PubMed:23702978
BEL Commons is developed and maintained in an academic capacity by Charles Tapley Hoyt and Daniel Domingo-Fernández at the Fraunhofer SCAI Department of Bioinformatics with support from the IMI project, AETIONOMY. It is built on top of PyBEL, an open source project. Please feel free to contact us here to give us feedback or report any issues. Also, see our Publishing Notes and Data Protection information.
If you find BEL Commons useful in your work, please consider citing: Hoyt, C. T., Domingo-Fernández, D., & Hofmann-Apitius, M. (2018). BEL Commons: an environment for exploration and analysis of networks encoded in Biological Expression Language. Database, 2018(3), 1–11.