p(HGNC:MAP2)
Four weeks after terminal differentiation, 80% of cells were positive for the neuron-specific marker MAP2, and there was no significant difference between control and patient neurons (Figure S2A) PubMed:27594586
Four weeks after terminal differentiation, 80% of cells were positive for the neuron-specific marker MAP2, and there was no significant difference between control and patient neurons (Figure S2A) PubMed:27594586
NF-κB activates the expression of the two microtubule-associated proteins, microtubule-associated protein 1B (MAP1B) and microtubule-associated protein 2 (MAP2) [209], two major proteins known to play a pivotal role in the growth, elongation, and arborization of dendrites PubMed:28745240
Notably, a marked reduction in MAP2 immunoreactivity, along with a decrease in dendritic arbor, is reported in the primary auditory cortex (BA41) of schizophrenic subjects compared with healthy controls PubMed:30061532
NF-κB activates the expression of the two microtubule-associated proteins, microtubule-associated protein 1B (MAP1B) and microtubule-associated protein 2 (MAP2) [209], two major proteins known to play a pivotal role in the growth, elongation, and arborization of dendrites PubMed:28745240
Among various identified MAPs, microtubule-associated protein 2 (MAP2), which belongs to the MAP2/Tau family, is enriched in the brain and especially in dendrites, where it contributes to microtubule stabilization and overall dendritic architecture. PubMed:30061532
Among various identified MAPs, microtubule-associated protein 2 (MAP2), which belongs to the MAP2/Tau family, is enriched in the brain and especially in dendrites, where it contributes to microtubule stabilization and overall dendritic architecture. PubMed:30061532
Alterations in MAP2 immunoreactivity within the subiculum, entorhinal cortex, hippocampus, and prefrontal cortex have been suggested as the primary array of cytoskeletal abnormalities, which in turn result in impaired neurotransmission observed in schizophrenia PubMed:30061532
BEL Commons is developed and maintained in an academic capacity by Charles Tapley Hoyt and Daniel Domingo-Fernández at the Fraunhofer SCAI Department of Bioinformatics with support from the IMI project, AETIONOMY. It is built on top of PyBEL, an open source project. Please feel free to contact us here to give us feedback or report any issues. Also, see our Publishing Notes and Data Protection information.
If you find BEL Commons useful in your work, please consider citing: Hoyt, C. T., Domingo-Fernández, D., & Hofmann-Apitius, M. (2018). BEL Commons: an environment for exploration and analysis of networks encoded in Biological Expression Language. Database, 2018(3), 1–11.