bp(GO:"neuron differentiation")
It was then recognized that Ca2+ flux directly through nAChR channels or indirectly via voltage-gated Ca2+ channels is relevant for nicotinic modulation of transmitter release, synaptic plasticity, as well as neuronal viability, differentiation, and migration. PubMed:19126755
Among the mAChR family members, the M1 subtype makes up 50–60% of the total and is predominantly expressed in all major areas of the forebrain, including the hippocampus, cerebral cortex, corpus striatum, and thalamus[36-38]. M1 mAChR-knockout mice show a series of cognitive defi cits and impairments in long-term potentiation, indicating that the M1 subtype is physiologically linked to multiple functions such as synaptic plasticity, neuronal excitability, neuronal differentiation during early development, and learning and memory PubMed:24590577
Thus, both molecular and electrophysiological analyses suggest MAPT mutations do not affect early neuronal differentiation PubMed:27594586
Thus, both molecular and electrophysiological analyses suggest MAPT mutations do not affect early neuronal differentiation PubMed:27594586
In particular in the CA3 and DG regions almost 70% and in CA1 almost 50% of the new born cells got differentiated into NeuN positive neurons in the anti-aggregant TauRDΔKPP slices (Additional file 2: Figure S1A, bars 4, 8, 12).This reveals an increase in proliferation followed by an increase in neuronal differentiation in the anti-aggregant TauRDΔKPP slices PubMed:29202785
This also resulted in a 30% increase in the rate of differentiation in the CA1 region of the pro-aggregant TauRDΔK slices (Additional file 2: Fig. S1B, bars 2 and 4) PubMed:29202785
This suggests that the expression of anti-aggregant TauRDΔKPP is needed for the increased proliferation of newborn neurons, and since these new born neurons need endogenous mouse Tau for their migration, differentiation, and maturation, there is enhanced expression of endogenous mouse Tau PubMed:29202785
Here we present evidence that the indole compound ID-8 and a series of related molecules act to inhibit the neural specification of hESC through inhibition of DYRK1A. PubMed:28884684
Here we present evidence that the indole compound ID-8 and a series of related molecules act to inhibit the neural specification of hESC through inhibition of DYRK1A. PubMed:28884684
In the nervous system, NF-κB has been proposed to serve important function by acting as a transcription regulator: it has roles in inflammation, neuronal survival, differentiation, apoptosis, neurite outgrowth, and synaptic plasticity [5], which are impaired in the progression of various neurodegenerative diseases especially in AD. PubMed:27288790
Among the mAChR family members, the M1 subtype makes up 50–60% of the total and is predominantly expressed in all major areas of the forebrain, including the hippocampus, cerebral cortex, corpus striatum, and thalamus[36-38]. M1 mAChR-knockout mice show a series of cognitive defi cits and impairments in long-term potentiation, indicating that the M1 subtype is physiologically linked to multiple functions such as synaptic plasticity, neuronal excitability, neuronal differentiation during early development, and learning and memory PubMed:24590577
Here we present evidence that the indole compound ID-8 and a series of related molecules act to inhibit the neural specification of hESC through inhibition of DYRK1A. PubMed:28884684
In the nervous system, NF-κB has been proposed to serve important function by acting as a transcription regulator: it has roles in inflammation, neuronal survival, differentiation, apoptosis, neurite outgrowth, and synaptic plasticity [5], which are impaired in the progression of various neurodegenerative diseases especially in AD. PubMed:27288790
BEL Commons is developed and maintained in an academic capacity by Charles Tapley Hoyt and Daniel Domingo-Fernández at the Fraunhofer SCAI Department of Bioinformatics with support from the IMI project, AETIONOMY. It is built on top of PyBEL, an open source project. Please feel free to contact us here to give us feedback or report any issues. Also, see our Publishing Notes and Data Protection information.
If you find BEL Commons useful in your work, please consider citing: Hoyt, C. T., Domingo-Fernández, D., & Hofmann-Apitius, M. (2018). BEL Commons: an environment for exploration and analysis of networks encoded in Biological Expression Language. Database, 2018(3), 1–11.